小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數學教案 >

八年級數學教案設計五篇

時間: 巧綿2 數學教案

數學教案作為反映數學教師知識組織形式、教學行為方式差異的具體表征,是教師職業能力發展的重要體現。對于使用人教版教材的八年級數學老師們來說,怎樣準備教案可以幫助到上課呢?下面就是小編整理的八年級數學教案,希望大家喜歡。

八年級數學教案設計五篇

八年級數學教案1

一.說教材

本課時是華師大版八年級(上)數學第14章第二節內容,是在掌握勾股定理的基礎上對勾股定理的應用之一. 勾股定理是我國古數學的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面.教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用. 據此,制定教學目標如下: 1.知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解. 2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的. 3.情感與態度目標:感受數學在生活中的應用,感受數學定理的美. 教學重點:勾股定理的應用. 教學難點:勾股定理的正確使用. 教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理.

二.說教法和學法

1.以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程. 2.切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力. 3.通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發學生鉆研新知的欲望.

三.教學程序

本節內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規律和學習心理,教學程序設置如下: 一.回顧問:勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用. 二.新授課例1.如圖所示,有一個圓柱,它的高AB等于4厘米,底面周長等于20厘米,在圓柱下底面的A點有一只螞蟻,它想吃到上底面與A點相對的C點處的食物,沿圓柱側面爬行的最短路線是多少?(課本P57圖14.2.1)

①學生取出自制圓柱,,嘗試從A點到C點沿圓柱側面畫出幾條路線.思考:那條路線最短? ②如圖,將圓柱側面剪開展成一個長方形,從A點到C點的最短路線是什么?你畫得對嗎? ③螞蟻從A點出發,想吃到C點處的食物,它沿圓柱側面爬行的最短路線是什么?

思路點撥:引導學生在自制的圓柱側面上尋找最短路線;提醒學生將圓柱側面展開成長方形,引導學生觀察分析發現“兩點之間的所有線中,線段最短”. 學生在自主探索的基礎上興趣高漲,氣氛異常的活躍,他們發現螞蟻從A點往上爬到B點后順著直徑爬向C點爬行的路線是最短的!我也意外的發現了這種爬法是正確的,但是課本上是順著側面往上爬的,我就告訴學生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本P58圖14.2.3) 思路點撥:廠門的寬度是足夠的,這個問題的關鍵是觀察當卡車位于廠門正中間時其高度是否小于CH,點D在離廠門中線0.8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運用勾股定理求出

2.3m

CD= = =0.6,CH=0.6+2.3=2.9>2.5可見卡車能順利通過 .詳細解題過程看課本 引導學生完成P58做一做. 三.課堂小練 1.課本P58練習第1,2題. 2.探究: 一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內通過?為什么?

四.小結直角三角形在實際生活中有更為廣泛的應用希望同學們能緊緊抓住直角三角形的性質,學透勾股定理的具體應用,那樣就能很輕松的解決現實生活中的許多問題,達到事倍功半的效果。

五.布置作業 課本P60習題14.2第1,2,3題.

八年級數學教案2

教材分析

本節課選自人教版數學八年級上冊第十五章第四節第一個內容(P165-167)。因式分解是進行代數恒等變形的重要手段之一,它在以后的代數學習中有著重要的應用,如:多項式除法的簡便運算,分式的運算,解方程(組)以及二次函數的恒等變形等,因此學好因式分解對于代數知識的后繼學習具有相當重要的意義。

本節是因式分解的第1小節,占一個課時,它主要讓學生經歷從分解因數到分解因式的過程,讓學生體會數學思想——類比思想,讓學生了解分解因式與整式的乘法運算之間的互逆關系,感受分解因式在解決相關問題中的作用。

學情分析

基于學生在小學已經接觸過因數分解的經驗,但對于因式分解的概念還完全陌生,因此,本課時在讓學生重點理解因式分解概念的基礎上,應有意識地培養學 生知識遷移的數學能力,如:類比思想,逆向運算能力等。

學生的技能基礎的分析:學生已經熟悉乘法的分配律及其逆運算,并且學習了整式的乘法運算,因此,對于因式分解的引入,學生不會感到陌生,它為今天學習分解因式打下了良好基礎。

學生活動經驗基礎的分析:由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對于八年級學生還比較生疏,接受起來還有一定的困難,再者本節還沒有涉及因式分解的具體方法,所以對于學生來說,尋求因式分解的方法是一個難點。

教學目標

㈠、知識與技能:(1)使學生了解因式分解的意義,理解因式分解的概念。

(2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

㈡、過程與方法:(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養學生的觀察能力,進一步發展學生的類比思想。

(2)由整式乘法的逆運算過渡到因式分解,發展學生的逆向思維能力。

(3)通過對分解因式與整式的乘法的觀察與比較,培養學生的分析問 題能力與綜合應用能力。

㈢、情感態度與價值觀:讓學生初步感受對立統一的辨證觀點以及實事求是的科學態度。

教學重點和難點

教學重點:因式分解的概念及提公因式法。

教學難點:正確找出多項式各項的公因式及分解因式與整式乘法的區別和聯系。

教學過程

教學環節

教師活動

預設學生行為

設計意圖

活動1:

復習引入

看誰算得快:用簡便方法計算:

(1)7/9 ×13-7/9 ×6+7/9 ×2= ; (2)-2.67×132+25×2.67+7×2.67= ;

(3)992–1= 。

學生在計算是分為兩類:一是正確應用因數分解的辦法進行簡便計算;二是不懂正確應用因數分解的辦法進行簡便計算,而采取實實在在計算辦法進行計算。

如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算 ——因數分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環節設計的計算992–1的值是為了降低下一環節的難度,為下一環節的理解搭一個臺階.

注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

活動2:

導入課題

1. P165的探究(略);

2. 看誰想得快:993–99能被哪些數整除?你是怎么得出來的?

學生思考:從以上問題的解決中,你知道解決這些問題的關鍵是什么?

引導學生把這個式子分解成幾個數的積的形式,繼續強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。

活動3:探究新知

看誰算得準:

計算下列式子:

(1)3x(x-1)= ;

(2)m(a+b+c)= ;

(3)(m+4)(m-4)= ;

(4)(y-3)2= ;

(5)a(a+1)(a-1)= ;

根據上面的算式填空:

(1)ma+mb+mc= ;

(2)3x2-3x= ;

(3)m2-16= ;

(4)a3-a= ;

(5)y2-6y+9= 。

學生由整式的乘法的計算逆向得到因式分解(提公因式法)。

在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發展學生的逆向思維能力。

活動4:

歸納、得出新知

比較以下兩種運算的聯系與區別:

(1) a(a+1)(a-1)= a3-a

(2) a3-a= a(a+1)(a-1)

在第三環節的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

結論:把一個多項式化成幾 個整式的積的形式,這種變形叫做把這個多項式因式分解。其中,把多項式中各項的公因式提取出來做為積的一個因式,多項式各項剩下部分做為積的另一個因式這種因式分解的方法叫做提公因式法。

辨一辨:下列變形是因式分解嗎?為什么?

(1)a+b=b+a

(2)4x2y–8xy2+1=4xy(x–y)+1

(3)a(a–b)=a2–ab

(4)a2–2ab+b2=(a–b)2

學生討論、發言對因式分解,特別是提公因式法的認識、理解、看法,并總結出因式分解、提公因式法的定義。

通過學生的討論,使學生更清楚以下事實:

(1)分解因式與整式的乘法是一種互逆關系;

(2)分解因式的結果要以積的形式表示;

(3)每個因式必須是整式,且每個因式的次數都必須低于原來的多項式 的次數;

(4)必須分解到每個多項式不能再分解為止。

活動5:應用新知

例題學習:

P166例1、例2(略)

在教師的引導下,學生應用提公因式法共同完成例題。

讓學生進一步理解提公因式法進行因式分解。

活動6:課堂練習

1.P167練習;

2. 看誰連得準

x2-y2 (x+1)2

9-25 x 2 y(x -y)

x 2+2x+1 (3-5 x)(3+5 x)

xy-y2 (x+y)(x-y)

3.下列哪些變形是因式分解,為什么?

(1)(a+3)(a -3)= a 2-9

(2)a 2-4=( a +2)( a -2)

(3)a 2-b2+1=( a +b)( a -b)+1

(4)2πR+2πr=2π(R+r)

學生自主完成練習。

通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。

活動7:課堂小結

從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?

學生發言。

通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數學思想的理解。

活動8:課后作業

課本P170習題的第1、4大題。

學生自主完成

通過作業的鞏固對因式分解,特別是提公因式法理解并學會應用。

板書設計(需要一直留在黑板上主板書)

15.4.1提公因式法 例題

1.因式分解的定義

2.提公因式法

八年級數學教案3

教學目標:

1、知識目標:

(1)知道什么是全等形、全等三角形及全等三角形的對應元素;

(2)知道全等三角形的性質,能用符號正確地表示兩個三角形全等;

(3)能熟練找出兩個全等三角形的對應角、對應邊。

2、能力目標:

(1)通過全等三角形角有關概念的學習,提高學生數學概念的辨析能力;

(2)通過找出全等三角形的對應元素,培養學生的識圖能力。

3、情感目標:

(1)通過感受全等三角形的對應美激發學生熱愛科學勇于探索的精神;

(2)通過自主學習的發展體驗獲取數學知識的感受,培養學生勇于創新,多方位審視問題的創造技巧。

教學重點:全等三角形的性質。

教學難點:找全等三角形的對應邊、對應角

教學用具:直尺、微機

教學方法:自學輔導式

教學過程:

1、全等形及全等三角形概念的引入

(1)動畫(幾何畫板)顯示:

問題:你能發現這兩個三角形有什么美妙的關系嗎?

一般學生都能發現這兩個三角形是完全重合的。

(2)學生自己動手

畫一個三角形:邊長為4cm,5cm,7cm.然后剪下來,同桌的兩位同學配合,把兩個三角形放在一起重合。

(3)獲取概念

讓學生用自己的語言敘述:

全等三角形、對應頂點、對應角以及有關數學符號。

2、全等三角形性質的發現:

(1)電腦動畫顯示:

問題:對應邊、對應角有何關系?

由學生觀察動畫發現,兩個三角形的三組對應邊相等、三組對應角相等。

3、 找對應邊、對應角以及全等三角形性質的應用

(1) 投影顯示題目:

D、AD∥BC,且AD=BC

分析:由于兩個三角形完全重合,故面積、周長相等。至于D,因為AD和BC是對應邊,因此AD=BC。C符合題意。

說明:本題的解題關鍵是要知道中兩個全等三角形中,對應頂點定在對應的位置上,易錯點是容易找錯對應角。

分析:對應邊和對應角只能從兩個三角形中找,所以需將從復雜的圖形中分離出來

說明:根據位置元素來找:有相等元素,其即為對應元素:

然后依據已知的對應元素找:(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角。

說明:利用“運動法”來找

翻折法:找到中心線經此翻折后能互相重合的兩個三角形,易發現其對應元素

旋轉法:兩個三角形繞某一定點旋轉一定角度能夠重合時,易于找到對應元素

平移法:將兩個三角形沿某一直線推移能重合時也可找到對應元素

求證:AE∥CF

分析:證明直線平行通常用角關系(同位角、內錯角等),為此想到三角形全等后的性質――對應角相等

∴AE∥CF

說明:解此題的關鍵是找準對應角,可以用平移法。

分析:AB不是全等三角形的對應邊,

但它通過對應邊轉化為AB=CD,而使AB+CD=AD-BC

可利用已知的AD與BC求得。

說明:解決本題的關鍵是利用三角形全等的性質,得到對應邊相等。

(2)題目的解決

這些題目給出以后,先要求學生獨立思考后回答,其它學生補充完善,并可以提出自己的看法。教師重點指導,師生共同總結:找對應邊、對應角通常的幾種方法:

投影顯示:

(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;

(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;

(3)有公共邊的,公共邊一定是對應邊;

(4)有公共角的,角一定是對應角;

(5)有對頂角的,對頂角一定是對應角;

兩個全等三角形中一對最長邊(或角)是對應邊(或對應角),一對最短邊(或最小的角)是對應邊(或對應角)

4、課堂獨立練習,鞏固提高

此練習,主要加強學生的識圖能力,同時,找準全等三角形的對應邊、對應角,是以后學好幾何的關鍵。

5、小結:

(1)如何找全等三角形的對應邊、對應角(基本方法)

(2)全等三角形的性質

(3)性質的應用

讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

6、布置作業

a.書面作業P55#2、3、4

b.上交作業(中考題)

八年級數學教案4

1、教材分析

(1)知識結構

(2)重點、難點分析

本節內容的重點是三角形三邊關系定理及推論.這個定理與推論不僅給出了三角形的三邊之間的大小關系,更重要的是提供了判斷三條線段能否組成三角形的標準;熟練靈活地運用三角形的兩邊之和大于第三邊,是數學嚴謹性的一個體現;同時也有助于提高學生全面思考數學問題的能力;它還將在以后的學習中起著重要作用.

本節內容的難點一是三角形按邊分類,很多學生常常把等腰三角形與等邊三角形看成獨立的兩類,而在解題中產生錯誤.二是利用三角形三邊之間的關系解題,在學習和應用這個定理時,“兩邊之和大于第三邊”指的是“任何兩邊的和”都“大于第三邊”而學生的錯誤就在于以偏概全;分類討論在解題中也是學生感到困難的一個地方.

2、教法建議

沒有學生參與的教學是不成功的教學,教師為了充分調動主體參與,必須在為學生提供必要的背景知識的前提下,與學生一道探索定理在結構上、應用上留給我們的啟示.具體說明如下:

(1)強化能力

新課引入,先讓學生閱讀教材第一部分,然后通過回答教師設計的幾個問題,使學生明確對三角形按邊分類,做到不重不漏,其中等腰三角形包括等邊三角形,反過來等邊三角形是等腰三角形的一種特例.

通過閱讀,使學生初步認識數學概念的含義,發現疑難;理解領會數學語言(文字語言、符號語言、圖形語言),促進數學語言內化,從而提高學生的數學語言水平、自學能力及交流能力

(2)主動獲取

在得出三角形三條邊關系定理過程中,針對基礎比較好的學生,讓學生考慮回憶第

一冊第一章中學過的這條公理并給出證明,在這個基礎上,讓學生把定理的內容敘述出來.(3)激蕩思維

由定理獲得了:判斷三條線段構成一個三角形的一種方法,除了這一種方法外,是否還有其它的判斷方法呢?從而激蕩起學生思維浪花:方法是什么呢?學生最初可能很快得到“推論”,此時瓜熟蒂落,順理成章地引出教材中的推論.在此基礎上,讓學生通過討論,簡化上述兩種方法,由此得到下面兩種方法.這里,學生若感到困難,教師可適當做提示.方法3:已知線段 , ( ),若第三條線段c滿足 - c則線段 , ,c可組成一個三角形.教學中采用這種教學方法可培養學生分析問題探索問題的能力,提高學生對數學知識結構完整性的認識.

(4)加深理解

進行必要的例題講解和適當的解題練習,以達到熟練地運用定理及推論.從過程中讓學生體味到數學造化之神奇.也可適當指出,此定理及推論不僅提供了判定三條線段是否構成三角形的根據,也為今后解決字母取值范圍問題提供了有利的依據.

整個教學過程,是學生主動參與,教師及時點撥,學生積極探索的過程,教學過程跌宕起伏,問題逐步深化,學生思維逐步擴展,使學生在愉快、主動中得到發展.

教學目標:

(1)掌握三角形三邊關系定理及其推論,會根據三條線段的長度判斷他們能否構成三角形;

(2)弄清三角形按邊的相等關系的分類;

(3)通過三角形的分類學習,使學生知道分類的基本思想,提高學生歸納概括的能力;

(4)通過三角形三邊關系定理的學習,培養學生轉化的能力;

(5)通過等邊三角形是等腰三角形的特例,滲透一般與特殊的辯證關系.

教學重點:三角形三邊關系定理及推論

教學難點:三角形按邊分類及利用三角形三邊關系解題

教學用具:直尺、微機

教學方法:談話、探究式

教學過程:

1、閱讀新課,回答問題

先讓學生閱讀教材的第一部分,然后回答下列問題:

(1)這一部分教材中的數學概念有哪些?(指出來并給予解釋)

(2)等腰三角形與等邊三角形有什么關系?

估計有的學生可能把等腰三角形和等邊三角形看成獨立的兩類.

(3)寫出三角形按邊的相等關系分類的情況.

教師最后板書給出.

(要求學生之間可互相補充,從一開始就鼓勵雙邊交流與多邊交流)

2、發現并推導出三邊關系定理

問題1:用長度為4cm、 10cm 、16cm的線繩(課前準備好的)能否搭建一個三角形?(讓學生動手操作)

問題2:你能解釋上述結果的原因嗎?

問題3:任何三條線段都能組成一個三角形嗎?滿足什么條件時,三條線段可組成一個三角形?

定理:三角形兩邊的和大于第三邊

(發現過程采用小步子原則,讓學生在不知不覺中發現數學中的真理)

3、導出三邊關系定理的推論及其它兩種方法

由前面得到了判斷所給三條線段能否組成三角形的一個依據.那么是否還有其它方法呢?請同學們在定理的基礎上來找:

估計學生很容易得到推論,讓學生用自己的語言敘述,教師稍加整理后給出規范敘述.

推論:三角形兩邊的差小于第三邊

(給每一個學生表現個人數學語言表達才能的機會)

能否簡化上面定理及推論?從而得到如下兩種判定方法:

(1)、已知線段 , ( ),若第三條線段c滿足 - c則線段 , ,c可組成一個三角形.

4、三角形三邊關系定理及推論的應用

例1 判斷題:(出示投影)

(1)等邊三角形是等腰三角形

(2)三角形可分為不等邊三角形、等腰三角形和等邊三角形

(3)已知三線段 滿足 ,那么 為邊可構成三角形

(4)等腰三角形的腰比底長

(本例主要考察學生對概念、定理及推論的理解程度,不要求做在本上,只需口答即可)

(本例要求學生說出解題思路,教師點到為止)

例3 一個等腰三角形的周長為18 .

(1) 已知腰長是底邊長的2倍,求各邊長.

(2) 其中一邊長4 ,求其他兩邊長.

這是一道有課堂練習性質的例題,允許學生有3分鐘左右的獨立思考,允許想出來的同學表達自己的想法,其它同學補充完善.

(數學教師的課堂教學應該是敢于放手,盡可能多地給學生創造展示自己的思維空間和時間)

例4 草原上有4口油井,位于四邊形ABCD的4個頂點,

如圖1現在要建一個維修站H,試問H建在何處,

才能使它到4口油井的距離HA+HB+HC+HD為最小,

說明理由.

本例有一定的難度,給出的方法是解決此類型問題常見的極為簡捷的方法,略微構造就可以使用三角形三邊關系定理得出答案.

5、小結

本節課我們學習了三角形三邊關系的定理和推論,還知道了定理和推論的一系列靈活運用:

(1)判斷三條已知線段能否組成三角形

采用一種較為簡便的判法:若最短邊與較長邊的和大于最長邊,則可構成三角形,否則不能.

(2)確定三角形第三邊的取值范圍

兩邊之差<第三邊<兩邊之和

若時間寬裕,讓學生經討論后自由表述,其他同學補充,自己將知識系統化,以自己的方式進行建構.

6、布置作業

a. 書面作業P41#8、9

b. 思考題:1、在四邊形ABCD中,AC與BD相交于P,求證:

(AB+BC+CD+AD)<ac+bd<ab+bc+cd+ad< p="">

2、用15根等長的火柴棒擺成的三角形中,最長邊最多可以由幾根火柴棒組成?(提示:由上面方法2,a+b+c>2a 又a+b+c<3a得出a的范圍,所以可知最多可以由7根火柴棒組成)

八年級數學教案5

教學目標

1.等腰三角形的概念. 2.等腰三角形的性質. 3.等腰三角形的概念及性質的應用.

教學重點: 1.等腰三角形的概念及性質. 2.等腰三角形性質的應用.

教學難點:等腰三角形三線合一的性質的理解及其應用.

教學過程

Ⅰ.提出問題,創設情境

在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是.

問題:那什么樣的三角形是軸對稱圖形?

滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形.

Ⅱ.導入新課: 要求學生通過自己的思考來做一個等腰三角形.

作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

思考:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

2.等腰三角形的兩底角有什么關系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.

沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質:

1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

求:△ABC各角的度數.

分析:根據等邊對等角的性質,我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內角和為180°,就可求出△ABC的三個內角.

把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:因為AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設∠A=x,則 ∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習來鞏固這節課所學的知識.

Ⅲ.隨堂練習:1.課本P51練習 1、2、3. 2.閱讀課本P49~P51,然后小結.

Ⅳ.課時小結

這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們.

Ⅴ.作業: 課本P56習題12.3第1、2、3、4題.

板書設計

12.3.1.1 等腰三角形

一、設計方案作出一個等腰三角形

二、等腰三角形性質: 1.等邊對等角 2.三線合一

192 主站蜘蛛池模板: 铝镁锰板_铝镁锰合金板_铝镁锰板厂家_铝镁锰金属屋面板_安徽建科 | 儿童乐园|游乐场|淘气堡招商加盟|室内儿童游乐园配套设备|生产厂家|开心哈乐儿童乐园 | 通风气楼_通风天窗_屋顶风机-山东美创通风设备有限公司 | 天津蒸汽/热水锅炉-电锅炉安装维修直销厂家-天津鑫淼暖通设备有限公司 | 深圳美安可自动化设备有限公司,喷码机,定制喷码机,二维码喷码机,深圳喷码机,纸箱喷码机,东莞喷码机 UV喷码机,日期喷码机,鸡蛋喷码机,管芯喷码机,管内壁喷码机,喷码机厂家 | 123悬赏网_发布悬赏任务_广告任务平台 | 罗茨真空机组,立式无油往复真空泵,2BV水环真空泵-力侨真空科技 | 分类168信息网 - 分类信息网 免费发布与查询 | 智能汉显全自动量热仪_微机全自动胶质层指数测定仪-鹤壁市科达仪器仪表有限公司 | 智慧消防-消防物联网系统云平台| 上海新光明泵业制造有限公司-电动隔膜泵,气动隔膜泵,卧式|立式离心泵厂家 | 肉嫩度仪-凝胶测试仪-国产质构仪-气味分析仪-上海保圣实业发展有限公司|总部 | 电位器_轻触开关_USB连接器_广东精密龙电子科技有限公司 | 无线遥控更衣吊篮_IC卡更衣吊篮_电动更衣吊篮配件_煤矿更衣吊篮-力得电子 | 加气混凝土砌块设备,轻质砖设备,蒸养砖设备,新型墙体设备-河南省杜甫机械制造有限公司 | 工程管道/塑料管材/pvc排水管/ppr给水管/pe双壁波纹管等品牌管材批发厂家-河南洁尔康建材 | 超声波焊接机_超音波熔接机_超声波塑焊机十大品牌_塑料超声波焊接设备厂家 | 青海电动密集架_智能密集架_密集架价格-盛隆柜业青海档案密集架厂家 | 寮步纸箱厂_东莞纸箱厂 _东莞纸箱加工厂-东莞市寮步恒辉纸制品厂 | 安徽成考网-安徽成人高考网 | 番茄畅听邀请码怎么输入 - Dianw8.com| 高空重型升降平台_高空液压举升平台_高空作业平台_移动式升降机-河南华鹰机械设备有限公司 | RV减速机-蜗轮蜗杆减速机-洗车机减速机-减速机厂家-艾思捷 | 防爆大气采样器-防爆粉尘采样器-金属粉尘及其化合物采样器-首页|盐城银河科技有限公司 | 体感VRAR全息沉浸式3D投影多媒体展厅展会游戏互动-万展互动 | 冷水机-工业冷水机-冷水机组-欧科隆品牌保障 | 水篦子|雨篦子|镀锌格栅雨水篦子|不锈钢排水篦子|地下车库水箅子—安平县云航丝网制品厂 | CE认证_产品欧盟ROHS-REACH检测机构-商通检测 | 楼承板-开闭口楼承板-无锡海逵楼承板 | 物和码官网,物和码,免费一物一码数字化营销SaaS平台 | 生物除臭剂-除味剂-植物-污水除臭剂厂家-携葵环保有限公司 | 不锈钢监控杆_监控立杆厂家-廊坊耀星光电科技有限公司 | 韦伯电梯有限公司 | 密封圈_泛塞封_格莱圈-[东莞市国昊密封圈科技有限公司]专注密封圈定制生产厂家 | 萃取箱-萃取槽-PVC萃取箱厂家-混合澄清槽- 杭州南方化工设备 | 国资灵活用工平台_全国灵活用工平台前十名-灵活用工结算小帮手 | 蜗轮丝杆升降机-螺旋升降机-丝杠升降机厂家-润驰传动 | 对夹式止回阀_对夹式蝶形止回阀_对夹式软密封止回阀_超薄型止回阀_不锈钢底阀-温州上炬阀门科技有限公司 | 选宝石船-陆地水上开采「精选」色选机械设备-青州冠诚重工机械有限公司 | 冷柜风机-冰柜电机-罩极电机-外转子风机-EC直流电机厂家-杭州金久电器有限公司 | 成都珞石机械 - 模温机、油温机、油加热器生产厂家 |