小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 七年級教案 > 數學教案 >

初一數學課程教案

時間: 沐欽 數學教案

初一數學課程教案都有哪些?由于計數的需要,人類從真實的事物中抽象出自然數,這是數學中所有“數”的起點。下面是小編為大家帶來的初一數學課程教案七篇,希望大家能夠喜歡!

初一數學課程教案

初一數學課程教案(精選篇1)

(一)運用公式法

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等于這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

(三)因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2.因式分解,必須進行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等于這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。

③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

(五)分組分解法

我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)×(a+b).

學好數學的關鍵就在于要適時適量地進行總結歸類,接下來小編就為大家整理了這篇人教版八年級數學全等三角形知識點講解,希望可以對大家有所幫助。

全等三角形的性質:全等三角形對應邊相等、對應角相等。

全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。

角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等

角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的'邊角關系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).

人教版八年級數學全等三角形知識點講解就為大家介紹到這里了,希望大家都能養成善于總結的好習慣。

這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.

(六)提公因式法

1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.

2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:

1)必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等于

一次項的系數.

2)將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:

①列出常數項分解成兩個因數的積各種可能情況;

②嘗試其中的哪兩個因數的和恰好等于一次項系數.

3)將原多項式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進行約分的目的是要把這個分式化為最簡分式.

3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.

6.注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減.

(八)分數的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.

2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.

3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

4.通分的依據:分式的基本性質.

5.通分的關鍵:確定幾個分式的公分母.

通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.

6.類比分數的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。

8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然后再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.

10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.

12.作為最后結果,如果是分式則應該是最簡分式.

(九)含有字母系數的一元一次方程

含有字母系數的一元一次方程

引例:一數的a倍(a≠0)等于b,求這個數。用x表示這個數,根據題意,可得方程ax=b(a≠0)

在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。

含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。

初一數學課程教案(精選篇2)

一、在平面內,確定物體的位置一般需要兩個數據。

二、平面直角坐標系及有關概念

1、平面直角坐標系

在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

2、為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。

3、點的坐標的概念

對于平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。

點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。

平面內點的與有序實數對是一一對應的。

4、不同位置的點的坐標的特征

(1)、各象限內點的坐標的特征

點P(x,y)在第一象限:x;0,y;0

點P(x,y)在第二象限:x;0,y;0

點P(x,y)在第三象限:x;0,y;0

點P(x,y)在第四象限:x;0,y;0

(2)、坐標軸上的點的特征

點P(x,y)在x軸上,y=0,x為任意實數

點P(x,y)在y軸上,x=0,y為任意實數

點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點

(3)、兩條坐標軸夾角平分線上點的坐標的特征

點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等

點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數

(4)、和坐標軸平行的直線上點的坐標的特征

位于平行于x軸的直線上的各點的縱坐標相同。

位于平行于y軸的直線上的各點的橫坐標相同。

(5)、關于x軸、y軸或原點對稱的點的坐標的特征

點P與點p’關于x軸對稱橫坐標相等,縱坐標互為相反數,即點P(x,y)關于x軸的對稱點為P’(x,-y)

點P與點p’關于y軸對稱縱坐標相等,橫坐標互為相反數,即點P(x,y)關于y軸的對稱點為P’(-x,y)

點P與點p’關于原點對稱橫、縱坐標均互為相反數,即點P(x,y)關于原點的對稱點為P’(-x,-y)

(6)、點到坐標軸及原點的距離

點P(x,y)到坐標軸及原點的距離:

(1)點P(x,y)到x軸的距離等于|y|;

(2)點P(x,y)到y軸的距離等于|x|;

(3)點P(x,y)到原點的距離等于根號+yy

初一數學課程教案(精選篇3)

教學目標

1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題,逐步培養“數形結合”和“轉化”數學能力。

2.過程與方法目標:發展學生的分析問題能力和表達能力。經歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。

3.情感態度與價值觀目標:通過自主學習的發展體驗獲取數學知識的感受;通過有關勾股定理的歷史講解,對學生進行德育教育

教學重點

1、重點:勾股定理及其逆定理的應用

2、難點:勾股定理及其逆定理的應用

一、基礎知識梳理

在本章中,我們探索了直角三角形的三邊關系,并在此基礎上得到了勾股定理,并學習了如何利用拼圖驗證勾股定理,介紹了勾股定理的用途;本章后半部分學習了勾股定理的逆定是以及它的應用.其知識結構如下:

1.勾股定理:

直角三角形兩直角邊的______和等于_______的平方.就是說,對于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有:————————————.這就是勾股定理.

勾股定理揭示了直角三角形___之間的數量關系,是解決有關線段計算問題的重要依據.

勾股定理的直接作用是知道直角三角形任意兩邊的長度,求第三邊的長.這里一定要注意找準斜邊、直角邊;二要熟悉公式的變形:

,.

2.勾股定理逆定理

“若三角形的兩條邊的平方和等于第三邊的平方,則這個三角形為________.”這一命題是勾股定理的逆定理.它可以幫助我們判斷三角形的形狀.為根據邊的關系解決角的有關問題提供了新的方法.定理的證明采用了構造法.利用已知三角形的邊a,b,c(a2+b2=c2),先構造一個直角邊為a,b的直角三角形,由勾股定理證明第三邊為c,進而通過“SSS”證明兩個三角形全等,證明定理成立.

3.勾股定理的作用:

已知直角三角形的兩邊,求第三邊;

勾股定理的逆定理是用來判定一個三角形是否是直角三角形的,但在判定一個三角形是否是直角三角形時應首先確定該三角形的邊,當其余兩邊的平方和等于邊的平方時,該三角形才是直角三角形.勾股定理的逆定理也可用來證明兩直線是否垂直,這一點同學

勾股定理是直角三角形的性質定理,而勾股定理的逆定理是直角三角形的判定定理,它不僅可以判定三角形是否為直角三角形,還可以判定哪一個角是直角,從而產生了證明兩直線互相垂直的新方法:利用勾股定理的逆定理,通過計算來證明,體現了數形結合的思想.

三角形的三邊分別為a、b、c,其中c為邊,若,則三角形是直角三角形;若,則三角形是銳角三角形;若,則三角形是鈍角三角形.所以使用勾股定理的逆定理時首先要確定三角形的邊.

二、考點剖析

考點一:利用勾股定理求面積

求:(1) 陰影部分是正方形; (2) 陰影部分是長方形; (3) 陰影部分是半圓.

2. 如圖,以Rt△ABC的三邊為直徑分別向外作三個半圓,試探索三個半圓的面積之間的關系.

考點二:在直角三角形中,已知兩邊求第三邊

例(09年山東濱州)如圖2,已知△ABC中,AB=17,AC=10,BC邊上的高,AD=8,則邊BC的長為( )

A.21 B.15 C.6 D.以上答案都不對

【強化訓練】:1.在直角三角形中,若兩直角邊的長分別為5cm,7cm ,則斜邊長為 .

2.(易錯題、注意分類的思想)已知直角三角形的兩邊長為4、5,則另一條邊長的平方是

3、已知直角三角形兩直角邊長分別為5和12, 求斜邊上的高.(結論:直角三角形的兩條直角邊的積等于斜邊與其高的積,ab=ch)

考點三:應用勾股定理在等腰三角形中求底邊上的高

例、(09年湖南長沙)如圖1所示,等腰中,,

是底邊上的高,若,求 ①AD的長;②ΔABC的面積.

考點四:應用勾股定理解決樓梯上鋪地毯問題

例、(09年濱州)某樓梯的側面視圖如圖3所示,其中米,,

,因某種活動要求鋪設紅色地毯,則在AB段樓梯所鋪地毯的長度應為 .

分析:如何利用所學知識,把折線問題轉化成直線問題,是問題解決的關鍵。仔細觀察圖形,不難發現,所有臺階的高度之和恰好是直角三角形ABC的直角邊BC的長度,所有臺階的寬度之和恰好是直角三角形ABC的直角邊AC的長度,只需利用勾股定理,求得這兩條線段的長即可。

考點五、利用列方程求線段的長(方程思想)

1、小強想知道學校旗桿的高,他發現旗桿頂端的繩子垂到地面還多2米,當他把繩子的下端拉開4米后,發現下端剛好接觸地面,你能幫他算出來嗎?

【強化訓練】:折疊矩形ABCD的一邊AD,點D落在BC邊上的點F處,已知AB=4cm,BC=5cm,求CF 和EC。.

考點六:應用勾股定理解決勾股樹問題

例、如右圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中的正方形的邊長為5,則正方形A,B,C,D的面積的和為

分析:勾股樹問題中,處理好兩個方面的問題,

一個是正方形的邊長與面積的關系,另一個是正方形的面積與直角三角形直角邊與斜邊的關系。

考點七:判別一個三角形是否是直角三角形

例1:分別以下列四組數為一個三角形的邊長:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能夠成直角三角形的有

【強化訓練】:已知△ABC中,三條邊長分別為a=n-1, b=2n, c=n+1(n>1).試判斷該三角形是否是直角三角形,若是,請指出哪一條邊所對的角是直角.

考點八:其他圖形與直角三角形

例:如圖是一塊地,已知AD=4m,CD=3m,∠D=90°,AB=13m,BC=12m,求這塊地的面積。

考點九:與展開圖有關的計算

例、如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的最短距離.

【強化訓練】:如圖一個圓柱,底圓周長6cm,高4cm,一只螞蟻沿外壁爬行,要從A點爬到B點,則最少要爬行 cm

四、課時作業優化設計

【駐足“雙基”】

1.設直角三角形的三條邊長為連續自然數,則這個直角三角形的面積是_____.

2.直角三角形的兩直角邊分別為5cm,12cm,其中斜邊上的高為( ).

A.6cm B.8.5cm C.cm D.cm

【提升“學力”】

3.如圖,△ABC的三邊分別為AC=5,BC=12,AB=13,將△ABC沿AD折疊,使AC落在AB上,求DC的長.

4.如圖,一只鴨子要從邊長分別為16m和6m的長方形水池一角M游到水池另一邊中點N,那么這只鴨子游的最短路程應為多少米?

5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點沿紙箱爬到B點,那么它所爬行的最短路線的長是

6.如圖:在一個高6米,長10米的樓梯表面鋪地毯,

則該地毯的長度至少是 米。

【聚焦“中考”】

8.(海南省中考題)如圖,鐵路上A、B兩點相距25km,C、D為兩村莊,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,現在要在鐵路AB上建一個土特產品收購站E,使得C、D兩村到E站的距離相等,則E站建在距A站多少千米處?

5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點沿紙箱爬到B點,那么它所爬行的最短路線的長是

6.如圖:在一個高6米,長10米的樓梯表面鋪地毯,

則該地毯的長度至少是 米。

初一數學課程教案(精選篇4)

教學目標

1、在把實際問題轉化為一元二次方程的模型的過程中,形成對一元二次方程的感性認識。

2、理解一元二次方程的定義,能識別一元二次方程。

3、知道一元二次方程的一般形式,能熟練地把一元二次方程整理成一般形式,能寫出一般形式的二次項系數、一次項系數和常數項。

重點難點

重點:能建立一元二次方程模型,把一元二次方程整理成一般形式。

難點:把實際問題轉化為一元二次方程的模型。

教學過程

(一)創設情境

前面我們曾把實際問題轉化成一元一次方程和二元一次方程組的模型,大家已經感受到了方程是刻畫現實世界數量關系的工具。本節課我們將繼續進行建立方程模型的探究。

1、展示課本P.2問題一

引導學生設人行道寬度為xm,表示草坪邊長為35-2xm,找等量關系,列出方程。

(35-2x)2=900①

2、展示課本P.2問題二

引導思考:小明與小亮第一次相遇以后要再次相遇,他們走的路程有何關系?怎樣用他們再次相遇的時間表示他們各自行駛的路程?

通過思考上述問題,引導學生設經過ts小明與小亮相遇,用s表示他們各自行駛的路程,利用路程方面的等量關系列出方程

2t+×0.01t2=3t②

3、能把①,②化成右邊為0,而左邊是只含有一個未知數的二次多項式的形式嗎?讓學生展開討論,并引導學生把①,②化成下列形式:

4x2-140x+32③

0.01t2-2t=0④

(二)探究新知

1、觀察上述方程③和④,啟發學生歸納得出:

如果一個方程通過移項可以使右邊為0,而左邊是只含有一個未知數的二次多項式,那么這樣的方程叫作一元二次方程,它的一般形式是:

ax2+bx+c=0,(a,b,c是已知數且a≠0),

其中a,b,c分別叫作二次項系數、一次項系數、常數項。

2、讓學生指出方程③,④中的二次項系數、一次項系數和常數項。

(三)講解例題

例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次項系數、一次項系數和常數項。

[解]去括號,得3x2+5x-12=x2+4x+4,

化簡,得2x2+x-16=0。

二次項系數是2,一次項系數是1,常數項是-16。

點評:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有兩個特征:一是方程的右邊為0,二是左邊二次項系數不能為0。此外要使學生認識到:二次項系數、一次項系數和常數項都是包括符號的。

例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?

(1)2x+3=5x-2;(2)x2=25;

(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

點評:通過一元一次方程與一元二次方程的比較,使學生深刻理解一元二次方程的意義。

(四)應用新知

課本P.4,練習第3題,

(五)課堂小結

1、一元二次方程的顯著特征是:只有一個未知數,并且未知數的次數是2。

2、一元二次方程的一般形式為:ax2+bx+c=0(a≠0),一元二次方程的二次項系數、一次項系數、常數項都是根據一般形式確定的。

3、在把實際問題轉化為一元二次方程模型的過程中,體會學習一元二次方程的必要性和重要性。

(六)思考與拓展

當常數a,b,c滿足什么條件時,方程(a-1)x2-bx+c=0是一元二次方程?這時方程的二次項系數、一次項系數分別是什么?當常數a,b,c滿足什么條件時,方程(a-1)x2-bx+c=0是一元一次方程?

當a≠1時是一元二次方程,這時方程的二次項系數是a-1,一次項系數是-b;當a=1,b≠0時是一元一次方程。

布置作業

課本習題1.1中A組第1,2,3題。

教學后記:

【1.2.1因式分解法、直接開平方法(1)】

教學目標

1、進一步體會因式分解法適用于解一邊為0,另一邊可分解成兩個一次因式乘積的一元二次方程。

2、會用因式分解法解某些一元二次方程。

3、進一步讓學生體會“降次”化歸的思想。

重點難點

重點:,掌握用因式分解法解某些一元二次方程。

難點:用因式分解法將一元二次方程轉化為一元一次方程。

教學過程

(一)復習引入1、提問:

(1)解一元二次方程的基本思路是什么?

(2)現在我們已有了哪幾種將一元二次方程“降次”為一元一次方程的方法?

2、用兩種方法解方程:9(1-3x)2=25

(二)創設情境

說明:可用因式分解法或直接開平方法解此方程。解得x1=,,x2=-。

1、說一說:因式分解法適用于解什么形式的一元二次方程。

歸納結論:因式分解法適用于解一邊為0,另一邊可分解成兩個一次因式乘積的一元二次方程。

2、想一想:展示課本1.1節問題二中的方程0.01t2-2t=0,這個方程能用因式分解法解嗎?

(三)探究新知

引導學生探索用因式分解法解方程0.01t2-2t=0,解答課本1.1節問題二。

把方程左邊因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0

解得tl=0,t2=200。

t1=0表明小明與小亮第一次相遇;t2=200表明經過200s小明與小亮再次相遇。

(四)講解例題

1、展示課本P.8例3。

按課本方式引導學生用因式分解法解一元二次方程。

2、讓學生討論P.9“說一說”欄目中的問題。

要使學生明確:解方程時不能把方程兩邊都同除以一個含未知數的式子,若方程兩邊同除以含未知數的式子,可能使方程漏根。

3、展示課本P.9例4。

讓學生自己嘗試著解,然后看書上的解答,交換批改,并說一說在解題時應注意什么。

(五)應用新知

課本P.10,練習。

(六)課堂小結

1、用因式分解法解一元二次方程的基本步驟是:先把一個一元二次方程變形,使它的一邊為0,另一邊分解成兩個一次因式的乘積,然后使每一個一次因式等于0,分別解這兩個一元一次方程,得到的兩個解就是原一元二次方程的解。

2、在解方程時,千萬注意兩邊不能同時除以一個含有未知數的代數式,否則可能丟失方程的一個根。

(七)思考與拓展

用因式分解法解下列一元二次方程。議一議:對于含括號的守霜露次方程,應怎樣適當變形,再用因式分解法解。

(1)2(3x-2)=(2-3x)(x+1);(2)(x-1)(x+3)=12。

[解](1)原方程可變形為2(3x-2)+(3x-2)(x+1)=0,

(3x-2)(x+3)=0,3x-2=0,或x+3=0,

所以xl=,x2=-3

(2)去括號、整理得x2+2x-3=12,x2+2x-15=0,

(x+5)(x-3)=0,x+5=0或x-3=0,

所以x1=-5,x2=3

先讓學生動手解方程,然后交流自己的解題經驗,教師引導學生歸納:對于含括號的一元二次方程,若能把括號看成一個整體變形,把方程化成一邊為0,另一邊為兩個一次式的積,就不用去括號,如上述(1);否則先去括號,把方程整理成一般形式,再看是否能將左邊分解成兩個一次式的積,如上述(2)。

初一數學課程教案(精選篇5)

教學目標

1、知道解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。

2、學會用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。

3、引導學生體會“降次”化歸的思路。

重點難點

重點:掌握用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。

難點:通過分解因式或直接開平方將一元二次方程降次為一元一次方程。

教學過程

(一)復習引入

1、判斷下列說法是否正確

(1)若p=1,q=1,則pq=l(),若pq=l,則p=1,q=1();

(2)若p=0,g=0,則pq=0(),若pq=0,則p=0或q=0();

(3)若x+3=0或x-6=0,則(x+3)(x-6)=0(),

若(x+3)(x-6)=0,則x+3=0或x-6=0();

(4)若x+3=或x-6=2,則(x+3)(x-6)=1(),

若(x+3)(x-6)=1,則x+3=或x-6=2()。

答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。

2、填空:若x2=a;則x叫a的,x=;若x2=4,則x=;

若x2=2,則x=。

答案:平方根,±,±2,±。

(二)創設情境

前面我們已經學了一元一次方程和二元一次方程組的解法,解二元一次方程組的基本思路是什么?(消元、化二元一次方程組為一元一次方程)。由解二元一次方程組的基本思路,你能想出解一元二次方程的基本思路嗎?

引導學生思考得出結論:解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。

給出1.1節問題一中的方程:(35-2x)2-900=0。

問:怎樣將這個方程“降次”為一元一次方程?

(三)探究新知

讓學生對上述問題展開討論,教師再利用“復習引入”中的內容引導學生,按課本P.6那樣,用因式分解法和直接開平方法,將方程(35-2x)2-900=0“降次”為兩個一元一次方程來解。讓學生知道什么叫因式分解法和直接開平方法。

(四)講解例題

展示課本P.7例1,例2。

按課本方式引導學生用因式分解法和直接開平方法解一元二次方程。

引導同學們小結:對于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接開平方法解。

因式分解法的基本步驟是:把方程化成一邊為0,另一邊是兩個一次因式的乘積(本節課主要是用平方差公式分解因式)的形式,然后使每一個一次因式等于0,分別解兩個一元一次方程,得到的兩個解就是原一元二次方程的解。

直接開平方法的步驟是:把方程變形成(ax+b)2=k(k≥0),然后直接開平方得ax+b=和ax+b=-,分別解這兩個一元一次方程,得到的解就是原一元二次方程的解。

注意:(1)因式分解法適用于一邊是0,另一邊可分解成兩個一次因式乘積的一元二次方程;

(2)直接開平方法適用于形如(ax+b)2=k(k≥0)的方程,由于負數沒有平方根,所以規定k≥0,當k<0時,方程無實數解。

(五)應用新知

課本P.8,練習。

(六)課堂小結

1、解一元二次方程的基本思路是什么?

2、通過“降次”,把—元二次方程化為兩個一元一次方程的方法有哪些?基本步驟是什么?

3、因式分解法和直接開平方法適用于解什么形式的一元二次方程?

(七)思考與拓展

不解方程,你能說出下列方程根的情況嗎?

(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。

答案:(1)有兩個不相等的實數根;(2)和(4)沒有實數根;(3)有兩個相等的實數根

通過解答這個問題,使學生明確一元二次方程的解有三種情況。

布置作業

初一數學課程教案(精選篇6)

考標要求:

1體會因式分解法適用于解一邊為0,另一邊可分解為兩個一次因式的乘積的一元二次方程;

2會用因式分解法解某些一元二次方程。

重點:用因式分解法解一元二次方程。

難點:用因式分解把一元二次方程化為左邊是兩個一次二項式相乘右邊是零的形式。

一填空題(每小題5分,共25分)

1解方程(2+x)(x-3)=0,就相當于解方程()

A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0

2用因式分解法解一元二次方程的思路是降次,下面是甲、乙兩位同學解方程的過程:

(1)解方程:,小明的解法是:解:兩邊同除以x得:x=2;

(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0

其中正確的是()

A小明B小亮C都正確D都不正確

3下面方程不適合用因式分解法求解的是()

A2-32=0,B2(2x-3)-=0,,D

4方程2x(x-3)=5(x-3)的根是()

Ax=,Bx=3C=,=3Dx=

5定義一種運算“※”,其規則為:a※b=(a+1)(b+1),根據這個規則,方程x※(x+1)=0的解是()

Ax=0Bx=-1C=0,=-1,D=-1=-2

二填空題(每小題5分,共25分)

6方程(1+)-(1-)x=0解是=_____,=__________

7當x=__________時,分式值為零。

8若代數式與代數式4(x-3)的值相等,則x=_________________

9已知方程(x-4)(x-9)=0的解是等腰三角形的兩邊長,則這個等腰三角形的周長=_______.

10如果,則關于x的一元二次方程a+bx=0的解是_________

三解答題(每小題10分,共50分)

11解方程

(1)+2x+1=0(2)4-12x+9=0

(3)25=9(4)7x(2x-3)=4(3-2x)

12解方程=(a-2)(3a-4)

13已知k是關于x的方程4k-8x-k=0的一個根,求k的值。?

14解方程:-2+1=0

15對于向上拋的物體,在沒有空氣阻力的情況下,有如下關系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(為方便起見,本題中g取10米/),t是拋出后所經過的時間。

如果將一物體以每秒25米的初速向上拋,物體多少秒后落到地面

初一數學課程教案(精選篇7)

教學目標

1、理解“配方”是一種常用的數學方法,在用配方法將一元二次方程變形的過程中,讓學生進一步體會化歸的思想方法。

2、會用配方法解二次項系數為1的一元二次方程。

重點難點

重點:會用配方法解二次項系數為1的一元二次方程。

難點:用配方法將一元二次方程變形成可用因式分解法或直接開平方法解的方程。

教學過程

(一)復習引入

1、a2±2ab+b2=?

2、用兩種方法解方程(x+3)2-5=0。

如何解方程x2+6x+4=0呢?

(二)創設情境

如何解方程x2+6x+4=0呢?

(三)探究新知

1、利用“復習引入”中的內容引導學生思考,得知:反過來把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所學的因式分解法或直接開平方法解。

2、怎樣把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?讓學生完成課本P.10的“做一做”并引導學生歸納:當二次項系數為“1”時,只要在二次項和一次項之后加上一次項系數一半的平方,再減去這個數,使得含未知數的項在一個完全平方式里,這種做法叫作配方.將方程一邊化為0,另一邊配方后就可以用因式分解法或直接開平方法解了,這樣解一元二次方程的方法叫作配方法。

(四)講解例題

例1(課本P.11,例5)

[解](1)x2+2x-3(觀察二次項系數是否為“l”)

=x2+2x+12-12-3(在一次項和二次項之后加上一次項系數一半的平方,再減去這個數,使它與原式相等)

=(x+1)2-4。(使含未知數的項在一個完全平方式里)

用同樣的方法講解(2),讓學生熟悉上述過程,進一步明確“配方”的意義。

例2引導學生完成P.11~P.12例6的填空。

(五)應用新知

1、課本P.12,練習。

2、學生相互交流解題經驗。

(六)課堂小結

1、怎樣將二次項系數為“1”的一元二次方程配方?

2、用配方法解一元二次方程的基本步驟是什么?

(七)思考與拓展

解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。

說一說一元二次方程解的情況。

[解](1)將方程的左邊配方,得(x-3)2+1=0,移項,得(x-3)2=-1,所以原方程無解。

(2)用配方法可解得x1=x2=-。

(3)用配方法可解得x1=,x2=

一元二次方程解的情況有三種:無實數解,如方程(1);有兩個相等的實數解,如方程(2);有兩個不相等的實數解,如方程(3)。

課后作業

課本習題

教學后記:

37326 主站蜘蛛池模板: 工业机械三维动画制作 环保设备原理三维演示动画 自动化装配产线三维动画制作公司-南京燃动数字 聚合氯化铝_喷雾聚氯化铝_聚合氯化铝铁厂家_郑州亿升化工有限公司 | 无硅导热垫片-碳纤维导热垫片-导热相变材料厂家-东莞市盛元新材料科技有限公司 | 胶水,胶粘剂,AB胶,环氧胶,UV胶水,高温胶,快干胶,密封胶,结构胶,电子胶,厌氧胶,高温胶水,电子胶水-东莞聚力-聚厉胶粘 | 艾乐贝拉细胞研究中心 | 国家组织工程种子细胞库华南分库 | 四川实木门_成都实木门 - 蓬溪聚成门业有限公司 | 合肥活动房_安徽活动板房_集成打包箱房厂家-安徽玉强钢结构集成房屋有限公司 | 嘉兴恒升声级计-湖南衡仪声级计-杭州爱华多功能声级计-上海邦沃仪器设备有限公司 | 深圳品牌设计公司-LOGO设计公司-VI设计公司-未壳创意 | 美国HASKEL增压泵-伊莱科elettrotec流量开关-上海方未机械设备有限公司 | 超细粉碎机|超微气流磨|气流分级机|粉体改性设备|超微粉碎设备-山东埃尔派粉碎机厂家 | 泰兴市热钻机械有限公司-热熔钻孔机-数控热熔钻-热熔钻孔攻牙一体机 | 私人别墅家庭影院系统_家庭影院音响_家庭影院装修设计公司-邦牛影音 | 水质监测站_水质在线分析仪_水质自动监测系统_多参数水质在线监测仪_水质传感器-山东万象环境科技有限公司 | 液氮罐_液氮容器_自增压液氮罐-北京君方科仪科技发展有限公司 | 中国品牌排名投票_十大品牌榜单_中国著名品牌【中国品牌榜】 | 粘弹体防腐胶带,聚丙烯防腐胶带-全民塑胶| GAST/BRIWATEC/CINCINNATI/KARL-KLEIN/ZIEHL-ABEGG风机|亚喜科技 | 客服外包专业服务商_客服外包中心_网萌科技 | 金属回收_废铜废铁回收_边角料回收_废不锈钢回收_废旧电缆线回收-广东益夫金属回收公司 | CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | 退火炉,燃气退火炉,燃气热处理炉生产厂家-丹阳市丰泰工业炉有限公司 | 海日牌清洗剂-打造带电清洗剂、工业清洗剂等清洗剂国内一线品牌 海外整合营销-独立站营销-社交媒体运营_广州甲壳虫跨境网络服务 | 新疆乌鲁木齐网站建设-乌鲁木齐网站制作设计-新疆远璨网络 | 动物麻醉机-数显脑立体定位仪-北京易则佳科技有限公司 | J.S.Bach 圣巴赫_高端背景音乐系统_官网| 东莞爱加真空科技有限公司-进口真空镀膜机|真空镀膜设备|Polycold维修厂家 | 液氮罐(生物液氮罐)百科-无锡爱思科 | 传爱自考网_传爱自学考试网 | 上海风淋室_上海风淋室厂家_上海风淋室价格_上海伯淋 | 抖音短视频运营_企业网站建设_网络推广_全网自媒体营销-东莞市凌天信息科技有限公司 | 金环宇|金环宇电线|金环宇电缆|金环宇电线电缆|深圳市金环宇电线电缆有限公司|金环宇电缆集团 | 螺旋压榨机-刮泥机-潜水搅拌机-电动泥斗-潜水推流器-南京格林兰环保设备有限公司 | 北京四合院出租,北京四合院出售,北京平房买卖 - 顺益兴四合院 | 恒温恒湿试验箱厂家-高低温试验箱维修价格_东莞环仪仪器_东莞环仪仪器 | 马尔表面粗糙度仪-MAHR-T500Hommel-Mitutoyo粗糙度仪-笃挚仪器 | 防弹玻璃厂家_防爆炸玻璃_电磁屏蔽玻璃-四川大硅特玻科技有限公司 | 电线电缆厂家|沈阳电缆厂|电线厂|沈阳英联塑力线缆有限公司 | 步进驱动器「一体化」步进电机品牌厂家-一体式步进驱动 | 【365公司转让网】公司求购|转让|资质买卖_股权转让交易平台 | 塑料检查井_双扣聚氯乙烯增强管_双壁波纹管-河南中盈塑料制品有限公司 | 山东PE给水管厂家,山东双壁波纹管,山东钢带增强波纹管,山东PE穿线管,山东PE农田灌溉管,山东MPP电力保护套管-山东德诺塑业有限公司 |