七年級數學上教案
作為一位杰出的教職工,就有可能用到教案,編寫教案有利于我們準確把握教材的重點與難點。下面是小編為你準備的七年級數學上教案,快來借鑒一下并自己寫一篇與我們分享吧!
七年級數學上教案篇1
一、聯系實際生活應用問題
應用性問題對很多初中學生來說是一個數學學習難點。很多應用性問題背景設置的情境都是學生在生活中很少經歷,造成學生對問題缺少最基本的感性認識,這樣就會讓學生在閱讀和理解題干的時候造成干擾。
應用性問題在考查學生數學知識基礎同時,更要檢驗學生的數學能力水平。在初中數學知識范圍內,應用性問題一般指方程(組)和不等式(組):一元一次方程、二元一次方程(組)、一元二次方程、一元一次不等式(組)。在平常實際課堂教學過程,由于學生人生閱歷的關系造成學生對外部世界的了解僅憑自己的感覺,大腦中生活內容的儲存量相當有限,尤其對生產、生活、科技及社會經貿活動的知識知之甚少,缺少這些知識經驗的第一體驗,所以教師和學生在解決應用性問題基本知識概念同時,一定加強這些知識點與實際生活聯系。
求解實際問題,其一般程序可分以下幾步:
1、審題。仔細閱讀題目,弄清題意,理順關系。讀題時要注意對語言去粗取精,提煉加工,抓住關鍵的字詞句。
2、建模。選取基本變量,將文字語言抽象概括成數學語言,依據有關定義、公理和數學知識,建立數學模型。
3、解模。根據數學知識和數學方法,求解數學模型,得到數學問題的結果。
4、檢驗(回歸)。把數學結果回歸到實際問題中去,通過分析、判斷、驗證得到實際問題的結果,回歸時要利用實際意義的條件進行檢驗取舍,找出正確結果。
二、幾何綜合題型
幾何型綜合題考查知識點多,條件隱晦,要求學生有較強的理解能力、分析能力、解決問題的能力,對數學基礎知識、數學基本方法有較強的駕馭能力,并有較強的創新意識和創新能力。
(1)幾何型綜合題,常用相似與圓的有關知識作為考查重點,并貫穿幾何、代數、三角函數等知識,以證明、計算等題型出現。
(2)幾何計算是以幾何推理為基礎的幾何量的計算,主要有線段和弧的長度的計算,角的三角函數值的計算,以及各種圖形面積的計算等。
(3)幾何論證題主要考查學生綜合應用所學幾何知識的能力。
幾何論證型綜合問題,常以相似形、圓的知識為背景,串聯其他幾何知識。順利證明幾何問題取決于下列因素:
①熟悉各種常見問題的基本證明;
②能準確添加基本輔助線;
③對復雜圖形能進行恰當的分解與組合;
④善于選擇證題的起點并轉化問題。
幾何計算型綜合問題,其中以線段的計算最為常見,線段的計算通常是通過勾股定理、相交弦定理、切割線定理及推論、相似三角形對應邊成比例所提供的等式進行的,這些等式可以根據不同的已知條件轉化為方程或方程組。
1一個方法
幾何圖形可以直觀的表示出來,在人們認識圖形的初級階段主要依靠形象思維。人們對幾何圖形的認識始于觀察、測量、比較等直觀實驗手段,人們可以通過直觀實驗了解幾何圖形,發現其中的規律。
2一個策略
幾何證明常用的方法是綜合法,它是以題設作為出發點,根據已確定的公理和定理,逐步推理,直接推得結論成立(或問題解決)。在綜合法的思路過程中,我們應當研究由題設的條件(或部分的條件)能得出哪些中間結果,進而再研究由這些中間結果(或它們的組合)又能得到哪些結果,如此繼續研究思考,直到推出題中的結論成立。
三、動態類綜合題型
函數、相似、動態這三者放在一起,無論是平??荚囘€是中考,都會是一個“香餑餑”。甚至一些地方中考最后壓軸題,都會以這樣的題干出現。如何解決這類問題?這類問題切入點是什么?自然成了很多學生學習和教師日常教學關注熱點,那么我們一起來看一下:
因動點產生的函數、相似三角形等綜合問題一般有三個解題途徑:
1、利用已知三角形中對應角、對應邊,通過相似在未知三角形中利用勾股定理、三角函數、對稱、旋轉等知識來推導邊的大小。
2、當三角形相似對應點未確定時,先要分析已知三角形的邊和角的特點,進而得出已知三角形是否為特殊三角形。根據未知三角形中已知邊與已知三角形的可能對應邊分類討論。
3、若兩個三角形的各邊均未給出,則應先設所求點的坐標進而用函數解析式來表示各邊的長度,之后利用相似來列方程求解。
七年級數學上教案篇2
【教學目標】
知識與技能:
使學生了解正數與負數是從實際需要中產生的。
過程與方法:
在經歷從具體例子引入負數的過程中,使學生理解正數與負數的概念,并會判斷一個數是正數還是負數,初步會用正負數表示具有相反意義的量,理解0所表示的意義。
情感與態度:
在負數概念形成的過程中,培養學生的觀察、歸納和概括能力,激發學生學好數學的熱情。
【學情分析 】
1.了解負數產生的背景(數的產生和發展離不開生活和生產的需要),體會負數在生產和生活中運用的重要性。 2.學生經歷負數引入的過程:生產和生活中的例子(具有互為相反意義的量)——數不夠用——負數的引入——數學符號的表示——問題的解決等過程,初步培養學生數學符號感,了解數學符號在數學學習中的地位和作用。培養學生在與人合作交流的過程中,主動探究問題本質,善于觀察、歸納、概括以及發現解決問題的方法的能力。
【重點難點】
正確認識正數和負數,理解0所表示的量的意義。
【教學過程】
教學活動
活動1【導入】導入
復習回顧,做好銜接 同學們已經有了六年學習數學的經驗,數對每一位同學來說并不陌生,相信同學們已經認識到數的產生和發展離不開生產和生活的需要。首先讓我們來回顧: 自然數的產生、分數的產生。 演示課件,展示圖片,直觀說明數的產生和擴充:(出示圖片說明自然數的產生、分數的產生。讓學生理解數的符號的產生的好處) 師生活動(引導學生觀察圖片,試著解釋圖片意義):我們知道,為了表示物體的個數(如原始社會打獵計數)或事物的順序,產生了1,2,3,...;為了表示“沒有”(比如獵物分完),引入了數0;有時分配、測量(丈量土地)的結果不是整數,需要用分數(小數)表示. 總之,數是為了滿足生產和生活的需要而產生發展起來的.
設計意圖:數的產生和發展離不開生活和生產的需要。
活動2【導入】活動2
演示課件,展示問題及相應的圖片。
問題(1)北京冬季里某天的溫度為-3~3 ,它的確切含義是什么?這一天北京的溫差是多少?
問題(2)有三個隊參加的足球比賽中,紅隊勝黃隊(4:1),黃隊勝藍隊(1:0),藍隊勝紅隊(1:0)三個隊的凈勝球數分別是2,-2,0,如何確定排名順序?
問題(3)2006年我國花生產量比上年增長1.8%,油菜籽產量比上年增長-2.7%,這里增長-2.7%代表什么意思?
師生活動:教師演示課件并對問題背景做些說明:
例如在凈勝球的問題中,先介紹確定足球比賽排名順序的規定:
兩隊積分不相同,積分高的隊排名在前;
兩隊積分相同,凈勝球多的隊排名在前;
兩隊積分、凈勝球都相同,進球多的隊排名在前。
其次介紹積分計算規則:勝一場得3分,平一場得1分,輸一場得0分。由此易知這三個隊的積分均為3+0=3。
最后介紹凈勝球的計算規則:紅隊勝黃隊(4:1)表示紅隊進4球,失1球或者黃隊進1球,失4球,凈勝球就是比賽中多進了幾個球。這里進球和失球是互為相反意義的量。我們規定:進球用“+”,失球用“-”表示,這樣進球數和失球數可分別在進球數和失球數前面添上“+”或“-”來表示。凈勝球就是在比賽中進球與失球之和。比如以紅隊為例,進球為4,失球為2(兩場比賽各失一球)記為-2,所以紅隊凈勝球為4+(-2)=2.類似地可算出黃隊凈勝球-2(進球比失球少2個球,相當于凈失球2個,所以記為-2),藍隊凈勝球是0.
在教師的指導下,學生思考-3 ~3 、凈勝球與排名的順序、增長-2.7%的意義以及在解決這些問題時必須要對這些新數進行四則運算等問題。
設計意圖:通過溫度的例子——出現新數-3還涉及到有理數的減法;凈勝球的例子,也出現了負數,確定凈勝球涉及有理數的加法,確定排名順序涉及有理數的大小的比較;在產量增長率的例子中,運用正負數描述朝指定方向變化的情況等問題,引出用各種符號表示數,讓學生試著解釋,激發他們的求知欲,同時對問題進行說明,找出它們的共性,揭示問題的實質(具有相反意義的量)。
具有相反意義的量的表示
師生活動:鑒于上面的分析討論,在教師的引導下,讓學生試著歸納具有相反意義的量的表示:
比如溫度的問題,零上與零下(是以零為分界點)是具有相反意義的量,我們規定零上為正,則零下為負;凈勝球的例子,進球與失球(對方進球)也是具有相反意義的量,我們規定進球為正,則失球為負…… 一般地,對于具有相反意義的量,我們可以把其中一種意義的量規定為正,并在其前面寫上一個“+”(讀作“正”)來表示;把與它意義相反的量規定為負的,并在其前面寫上一個“-”(讀作“負”)來表示(零除外)
設計意圖:由實例歸納具有相反意義的量的表示方法,培養學生合作交流意識及從特殊到一般認識問題本質的能力。
七年級數學上教案篇3
〔教學目標〕
一、知識與能力
借助生活中的實例會判斷一個數是正數還是負數,能用正負數表示具有相反意義的量
二、過程與方法
1、過程:通過實例引入負數,從而指導學生會識別正負數及其表示法,能應用正負數表示具有相反意義的量。
2、方法:討論法、探究法、講授法、觀察法。
三、情感、態度、價值觀
樂于接觸社會環境中的數學信息,愿意談論數學話題,在數學活動中發揮積極作用
〔重點難點〕本課的重點是了解正數與負數是由實際需要產生的以及有理數包括哪些數。難點是學習負數的必要性及有理數的分類。關鍵是要能準確地舉出具有相反意義的量的典型例子以及要明確有理數分類的標準。
正、負數的引入,有各種不同的方法。教材是由學生熟知的兩個實例:溫度與海拔高度引入的。比0℃高5攝氏度記作5℃,比0℃低5攝氏度,記作-5℃;比海平面高8848米,記作8848米,比海平面低155米記作-155米。由這兩個實例很自然地,把大于0的數叫做正數,把加“-”號的數叫做負數;0既不是正數也不是負數,是一個中性數,表示度量的“基準”。這樣引入正、負數,不僅有利于學生正確使用正、負數表示具有相反意義的量,而且還將幫助學生理解有理數的大小性質。把負數理解為小于0的數。教材中,沒有出現“具有相反意義的量”的概念。這是有意回避或淡化這個概念。目的是,從正、負數引入一開始就能較深刻的揭示正、負數和零的性質,幫助學生正確理解正、負數的概念。
關于有理數的分類要明確的是:分類標準不同,分類結果也不同,分類結果應是不重不漏,即每一個數必須屬于某一類,又不能同時屬于不同的兩類。
教學建議
這節課是在小學里學過的數的基礎上,從表示具有相反意義的量引進負數的.從內容上講,負數比非負數要抽象、難理解.因此在教學方法和教學語言的選擇上,盡可能注意中小學的銜接,既不違反科學性,又符合可接受性原則。例如,在講解有理數的概念時,讓學生清楚地認識有理數與算術數的根本區別,有理數是由兩部分組成:符號部分和數字部分(即算術數).這樣,在理解算術數和負數的基礎上,對有理數的概念的理解就簡便多了.
為了使學生掌握必要的數學思想和方法,在明確有理數的分類時,可以有意識地滲透分類討論的思想方法,理解分類的標準、分類的結果,以及它們的相互聯系。通過正數、負數都統一于有理數,可以將對立統一的辯證思想的逐步樹立滲透到日常教學中。
一、負數的引入
我們知道,數產生于人們實際生產和生活的需要。[投影1~3:圖1.1-1]人們由記數、排序,產生了數1,2,3……;為了表示“沒有”、“空位”引進了數0;測量和分配有時不能得到整數的結果,為此產生了分數和小數。
在生活、生產、科研中經常遇到數的表示與數的運算的問題。
[投影]1.北京冬季里某天的溫度為-3~3℃,它的確切含義是什么?這一天北京的溫差是多少?
七年級數學上教案篇4
一、教學目標
1.知識與技能
(1)讓學生在豐富的現實情境中進一步了解兩條直線的平行關系,掌握有關的符號表示;
(2)讓學生經歷用三角板、量角器畫平行線的方法,積累操作經驗;
(3)在實踐操作中,探索并了解平行線的有關性質;
2、數學思考
能在觀察和想象兩直線存在平行關系,并在實踐、探索中獲取平行線的有關性質。
3、解決問題
能在觀察、想像、實踐、操作中發現并提出問題,初步體會在解決問題的過程中與他人合作、交流的重要性。
4、情感與態度目標
認識到通過觀察、想象、實踐、操作、歸納可以獲取數學知識,體驗數學活動富有探索性,人而激發學生學習興趣,增強學生的學習信心,培養學生可持續學習的能力。
二、教材分析
“平行線”是第五章相交線與平行線第二節內容,本節內容安排三個課時,這一課時是本節內容的第一課時,在這一課時里,通過讓學生觀察兩條直線被第三條直線所截的模型,想象有轉動的過程中存在有相交的情況,從而得出概念及平行公理,那么本課時教學內容的設計意圖主要是讓學生在觀察、想象兩條線存在平行關系的基礎上,進一步了解兩直線平行的有關性質,為今后學平行線的判定做好鋪墊。本課設計的主要思路是通過讓學生觀察、實踐、操作等方式,使學生經歷實踐、分析、歸納等過程,從而獲得相關結論。
學生在觀察、實踐、操作之前,教師要提醒學生注意以下幾點:1、注意想象木條在轉動過程中的位置變化情況;2、實際生活中,大量存在的是平行線段,要把它們看成直線;3、強調畫平行線時要使用工具,不能徒手畫,還注意不能只畫橫平或豎立的圖形,要讓學生畫出一些變式圖形。
三、學校與學生情況分析
萬寧市第二中學是萬寧市一所普通中學,大部分的學生來自農村,學校的教學條件一般。我校七年級的學生沒有通過選拔考試,只是按要求就近入學。因此,大部分學生的基礎以及學習習慣較差。但在新的教學理念的指導下,在課堂教學中,逐漸淡化了知識傳授、接受學習、模仿訓練等傳統的模式,而注重學生學習興趣與態度的培養,注重學生的自主探索和合作交流以及創新意識的培養,把課堂真正還給學生。另外,根據七年級學生的年齡特征,他們都具有好動、好勝、好強的心理特點,現在在我所任教的班級中,學生已初步形成了動手操作,自主探索和合作交流的良好學風,學生之間互相提問的生生互動的氛圍已逐步形成。
七年級數學上教案篇5
教學設計
(一)情境引入
演示兩條直線被第三條直線所截的模型(如課本p13圖5?2-1)讓學生觀察,在這個過程中,有沒有直線a與b不相交的位置呢?這時,直線a與b的位置關系如何?在這種位置時,又有哪些性質?
揭示課題(板書):5.2.1平行線
(二)探討“情境引入中的問題”
活動一:
活動內容:讓學生拿出自己準備好的兩直線被第三直線所截的模型,進行轉動操作實踐(固定b與c,轉動a)。
活動方式:每位同學都動手實踐,同桌互相交流,并在班上反饋。
提出問題:
(1)轉動a,直線a從在c的左側與直線b相交逐步變為在右側與b相交,大家仔細觀察,再想象一下,在這個過程中,是否存在a與b不相交的位置?
(2)在生活的身邊,有很多線是平行的,大家找一找,我們教室里的哪些線是平行的?校圖內有哪些線是平行的?
(3)同學們已經初步認識了平行線,也找出了很多的平行線,那究竟怎樣的線叫平行線?
(4)在同一平面內,兩條直線有幾種位置關系?
活動結論:
①在同一平面內,不相交的兩條直線叫做平行線。
②在同一平面內,兩條直線的位置關系:相交與平行。
注:教師通過實例告訴學生,平行線必須在同一平面內。
活動二:
活動內容:讓學生回憶活動一或讓學生再次轉動木條a,并仔細觀察其變化情況,在黑板上出示課本p14圖5.2-3,讓學生畫平行線。
活動方式:每位同學都動手操作實踐,以前后桌四人為一個小組進行討論交流,并選出一位代表在班上反饋。
提出問題:
(1)在活動一:轉動木條a的過程中,有幾個位置使得a與b平行?
(2)讓學生拿出工具畫圖,在p14圖5.2-3中,試過點b畫直線a的平行線,能畫出幾條?再過點c畫直線a的平行線,能畫出幾條?
活動結論:經過直線外一點,有且只有一條直線與這條直線平行。
活動三:
活動內容:教師出示自己準備好的圖片(課本p14圖5.2-2),讓學生觀察、分析、討論、交流。
活動方式:每位同學都仔細觀察分析,以前后桌四人為一個小組進行討論、交流,并選出一位代表在班上反饋。
提出問題:
(1)平行線在生活中到處可見,有時也可組成一道美麗的風景線(教師出示如課本p14圖5.2-2的左圖),在這一個圖片中,哪些線是平行線?他們之間又有什么位置關系?
(2)在體育活動中也存在著平行線(教師出示如課本p14圖5.2-2的右圖),在這個圖片中,旅游池中的隔道繩之間有什么位置關系?
(3)以上兩個實例中,說明了平行線具有什么性質?
活動結論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
(三)知識的鞏固與應用
1、課本p19習題5.2第7題。
2、選擇題(用小黑板展示)
下列說法中不正確的是( )
a、過任一點p可以作已知直線a的平行線。
b、同一平面內的兩條不相交的直線是平行線。
c、過直線外一點只能畫一條直線與已知直線平行。
d、平行于同一條直線的兩條直線平行。
(四)小結
從本節課的學習活動中,你有什么收獲?(由學生自己小結)
(1)知識內容小結:①平行線的定義及其符號表示法。
②平行線的兩條性質。
(2)學習方法小結:可以通過觀察、想象、實踐、分析等方式,來獲得平行線的有關知識。
(五)作業布置
課本p20習題5.2第11題。
七年級數學上教案相關文章:
★ 小學教案模板