新人教版七年級數(shù)學(xué)上冊教案
數(shù)學(xué)(mathematics、maths)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,從某種角度看屬于形式科學(xué)的一種。下面是小編給大家整理的新人教版七年級數(shù)學(xué)上冊教案,僅供參考希望能夠幫助到大家。
新人教版七年級數(shù)學(xué)上冊教案1
教學(xué)目標(biāo):
1.通過對“零”的意義的探討,進(jìn)一步理解正數(shù)和負(fù)數(shù)的概念,能利用正負(fù)數(shù)正確表示具有相反意義的量(規(guī)定了向指定方向變化的量);
2.進(jìn)一步體驗正負(fù)數(shù)在生產(chǎn)生活中的廣泛應(yīng)用,提高解決實際問題的能力.
教學(xué)重點:深化對正負(fù)數(shù)概念的理解.
教學(xué)難點:正確理解和表示向指定方向變化的量.
教與學(xué)互動設(shè)計:
(一)知識回顧和理解
通過對上節(jié)課的學(xué)習(xí),我們知道在實際生產(chǎn)和生活中存在著具有兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負(fù)數(shù)來分別表示它們.
[問題1]:“零”為什么既不是正數(shù)也不是負(fù)數(shù)呢?
學(xué)生思考討論,借助舉例說明.
參考例子:用正數(shù)、負(fù)數(shù)和零表示零上溫度、零下溫度和零度.
思考 “0”在實際問題中有什么意義?
歸納 “0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.
如:水位不升不降時的水位變化,記作:0 m.
[問題2]:引入負(fù)數(shù)后,數(shù)按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?
(二)深化理解,解決問題
[問題3]:(課本P3例題)
【例1】(1)一個月內(nèi),小明體重增加2 kg,小華體重減少1kg,小強體重?zé)o變化,寫出他們這個月的體重增長值;
【例2】(2)某年,下列國家的商品進(jìn)出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家這一年商品進(jìn)出口總額的增長率.
解后語:在同一個問題中,分別用正數(shù)和負(fù)數(shù)表示的量具有相反的意義.寫出體重的增長值和進(jìn)出口的增長率就暗示著用正數(shù)來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負(fù)數(shù)表示它們.
鞏固練習(xí)
1.通過例題(2)提醒學(xué)生審題時要注意要求,題中求的是增長率,不是增長值.
2.讓學(xué)生再舉出一些常見的具有相反意義的量.
3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:
中國減少866,印度增長72,
韓國減少130,新西蘭增長434,
泰國減少3247, 孟加拉減少88.
(1)用正數(shù)和負(fù)數(shù)表示這六國1990~1995年平均森林面積的增長量;
(2)如何表示森林面積減少量,所得結(jié)果與增長量有什么關(guān)系?
(3)哪個國家森林面積減少最多?
(4)通過對這些數(shù)據(jù)的分析,你想到了什么?
閱讀與思考
(課本P6)用正數(shù)和負(fù)數(shù)表示加工允許誤差.
問題:1.直徑為30.032 mm和直徑為29.97 mm的零件是否合格?
2.你知道還有哪些事件可以用正負(fù)數(shù)表示允許誤差嗎?請舉例.
(三)應(yīng)用遷移,鞏固提高
1.甲冷庫的溫度是-12℃,乙冷庫的溫度比甲冷庫低5 ℃,則乙冷庫的溫度是 .
2.一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標(biāo)準(zhǔn)尺寸是9 mm,加工要求不超過標(biāo)準(zhǔn)尺寸多少?最小不小于標(biāo)準(zhǔn)尺寸多少?
3.摩托車廠本周計劃每天生產(chǎn)250輛摩托車,由于工人實行輪休,每天上班的人數(shù)不一定相等,實際每天生產(chǎn)量(與計劃量相比)的增減值如下表:
星期 一 二 三 四
增減 -5 +7 -3 +4
根據(jù)上面的記錄,問:哪幾天生產(chǎn)的摩托車比計劃量多?星期幾生產(chǎn)的摩托車最多,是多少輛?星期幾生產(chǎn)的摩托車最少,是多少輛?
類比例題,要求學(xué)生注意書寫格式,體會正負(fù)數(shù)的應(yīng)用.
(四)課時小結(jié)(師生共同完成)
新人教版七年級數(shù)學(xué)上冊教案2
教學(xué)目標(biāo):
1.了解正數(shù)與負(fù)數(shù)是實際生活的需要.
2.會判斷一個數(shù)是正數(shù)還是負(fù)數(shù).
3.會用正負(fù)數(shù)表示互為相反意義的量.
教學(xué)重點:會判斷正數(shù)、負(fù)數(shù),運用正負(fù)數(shù)表示具有相反意義的量,理解表示具有相反意義的量的意義.
教學(xué)難點:負(fù)數(shù)的引入.
教與學(xué)互動設(shè)計:
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
課件展示 珠穆朗瑪峰和吐魯番盆地,讓同學(xué)感受高于水平面和低于水平面的不同情況.
(二)合作交流,解讀探究
舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7 ℃和零下5 ℃,買進(jìn)90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等.
想一想 以上都是一些具有相反意義的量,你能用小學(xué)算術(shù)中的數(shù)來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?
為了用數(shù)表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進(jìn)、收入、上升、高出等規(guī)定為正的,而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規(guī)定為負(fù)的,正的量用算術(shù)里學(xué)過的數(shù)表示,負(fù)的量用學(xué)過的數(shù)前面加上“-”(讀作負(fù))號來表示(零除外).
活動 每組同學(xué)之間相互合作交流,一同學(xué)說出有關(guān)相反意義的兩個量,由其他同學(xué)用正負(fù)數(shù)表示.
討論 什么樣的數(shù)是負(fù)數(shù)?什么樣的數(shù)是正數(shù)?0是正數(shù)還是負(fù)數(shù)?自己列舉正數(shù)、負(fù)數(shù).
總結(jié) 正數(shù)是大于0的數(shù),負(fù)數(shù)是在正數(shù)前面加“-”號的數(shù),0既不是正數(shù),也不是負(fù)數(shù),是正數(shù)與負(fù)數(shù)的分界點.
(三)應(yīng)用遷移,鞏固提高
【例1】舉出幾對具有相反意義的量,并分別用正、負(fù)數(shù)表示.
【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等.
【例2】在某次乒乓球檢測中,一只乒乓球超過標(biāo)準(zhǔn)質(zhì)量0.02 g,記作+0.02 g,那么-0.03 g表示什么?
【例3】 某項科學(xué)研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負(fù),10時以后記為正.例如,9:15記為-1,10:45記為1等等.依此類推,上午7:45應(yīng)記為( )
A.3 B.-3 C.-2.5 D.-7.45
【點撥】讀懂題意是解決本題的關(guān)鍵.7:45與10:00相差135分鐘.
(四)總結(jié)反思,拓展升華
為了表示現(xiàn)實生活中具有相反意義的量引進(jìn)了負(fù)數(shù).正數(shù)就是我們過去學(xué)過(除零外)的數(shù),在正數(shù)前加上“-”號就是負(fù)數(shù),不能說“有正號的數(shù)是正數(shù),有負(fù)號的數(shù)是負(fù)數(shù)”.另外,0既不是正數(shù),也不是負(fù)數(shù).
1.下表是小張同學(xué)一周中簡記儲蓄罐中錢的進(jìn)出情況表(存入記為“+”):
星期 日 一 二 三 四 五 六
(元) +16 +5.0 -1.2 -2.1 -0.9 +10 -2.6
(1)本周小張一共用掉了多少錢?存進(jìn)了多少錢?
(2)儲蓄罐中的錢與原來相比是多了還是少了?
(3)如果不用正、負(fù)數(shù)的方法記賬,你還可以怎樣記賬?比較各種記賬的優(yōu)劣.
2.數(shù)學(xué)游戲:4個同學(xué)站或蹲成一排,從左到右每個人編上號:1,2,3,4.用“+”表示“站”,“-”(負(fù)號)表示“蹲”.
(1)由一個同學(xué)大聲喊:+1,-2,-3,+4,則第1、第4個同學(xué)站,第2、第3個同學(xué)蹲,并保持這個姿勢,然后再大聲喊:-1,-2,+3,+4,如果第2、第4個同學(xué)中有改變姿勢的,則表示輸了,作小小的“懲罰”;
(2)增加游戲難度,把4個同學(xué)順序調(diào)整一下,但每個人記作自己原來的編號,再重復(fù)(1)中的游戲.
(五)課堂跟蹤反饋
夯實基礎(chǔ)
1.填空題:
(1)如果節(jié)約用水30噸記為+30噸,那么浪費20噸記為 噸.
(2)如果4年后記作+4年,那么8年前記作 年.
(3)如果運出貨物7噸記作-7噸,那么+100噸表示 .
(4)一年內(nèi),小亮體重增加了3 kg,記作+3 kg;小陽體重減少了2 kg,則小陽增加了 .
2.中午12時,水位低于標(biāo)準(zhǔn)水位0.5米,記作-0.5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0.5米.
(1)用正數(shù)或負(fù)數(shù)記錄下午1時和下午5時的水位;
(2)下午5時的水位比中午12時水位高多少?
提升能力
3.糧食每袋標(biāo)準(zhǔn)重量是50公斤,現(xiàn)測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正數(shù)表示,請用正數(shù)和負(fù)數(shù)記錄甲、乙、丙三袋糧食的超重數(shù)和不足數(shù).
(六)課時小結(jié)
1.與以前相比,0的意義又多了哪些內(nèi)容?
2.怎樣用正數(shù)和負(fù)數(shù)表示具有相反意義的量?(用正數(shù)表示其中具有一種意義的量,另一種量用負(fù)數(shù)表示)
新人教版七年級數(shù)學(xué)上冊教案3
一、教學(xué)目標(biāo)
1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。
2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;
3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。
二、教學(xué)重難點
教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。
教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。
三、教法
主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境激活思維
1.學(xué)生觀看鐘祥二中相關(guān)背景視頻
意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。
2.聯(lián)系實際,提出問題。
問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。
學(xué)生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關(guān)地點用什么代表?(直線上的點)
3.學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?
師生活動:
學(xué)生思考后回答解決方法,學(xué)生代表畫圖。
學(xué)生畫圖后提問:
1.0代表什么?
2.數(shù)的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。
問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?
設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負(fù)數(shù)的作用,引導(dǎo)學(xué)生用三要素表達(dá),為定義數(shù)軸的概念提供直觀基礎(chǔ)。
問題4:你能說說上述2個實例的共同點嗎?
設(shè)計意圖:進(jìn)一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。
(二)自主學(xué)習(xí)探究新知
學(xué)生活動:帶著以下問題自學(xué)課本第8頁:
1.什么樣的直線叫數(shù)軸?它具備什么條件。
2.如何畫數(shù)軸?
3.根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?
4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
師生活動:
學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。
設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。
至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)
①數(shù)軸的定義。
②數(shù)軸三要素。
練習(xí):(媒體展示)
1.判斷下列圖形是否是數(shù)軸。
2.口答:數(shù)軸上各點表示的數(shù)。
3.在數(shù)軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?
數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和-a的點進(jìn)行同樣的討論。
設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。
(四)歸納總結(jié)反思提高
師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:
1.什么是數(shù)軸?
2.數(shù)軸的“三要素”各指什么?
3.數(shù)軸的畫法。
設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。
(五)目標(biāo)檢測設(shè)計
1.下列命題正確的是()
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4.在數(shù)軸上點A表示-4,如果把原點O向負(fù)方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。
五、板書
1.數(shù)軸的定義。
2.數(shù)軸的三要素(圖)。
3.數(shù)軸的畫法。
4.性質(zhì)。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1.什么樣的直線叫數(shù)軸?
定義:規(guī)定了_________、________、_________的直線叫數(shù)軸。
數(shù)軸的三要素:_________、_________、__________。
2.畫數(shù)軸的步驟是什么?
3.“原點”起什么作用?__________
4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
練習(xí):
1.畫一條數(shù)軸
2.在你畫好的數(shù)軸上表示下列有理數(shù):1.5,-2,-2.5,2,2.5,0,-1.5
活動三:議一議
小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?
歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的____邊,與原點的距離是____個單位長度;表示數(shù)-a的點在原點的____邊,與原點的距離是____個單位長度.
練習(xí):
1.數(shù)軸上表示-3的點在原點的_______側(cè),距原點的距離是______;表示6的點在原點的______側(cè),距原點的距離是______;兩點之間的距離為_______個單位長度。
2.距離原點距離為5個單位的點表示的數(shù)是________。
3.在數(shù)軸上,把表示3的點沿著數(shù)軸負(fù)方向移動5個單位長度,到達(dá)點B,則點B表示的數(shù)是________。
附:目標(biāo)檢測
1.下列命題正確的是()
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù).列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。
4.在數(shù)軸上點A表示-4,如果把原點O向負(fù)方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。
新人教版七年級數(shù)學(xué)上冊教案4
一、教學(xué)內(nèi)容分析
1.2有理數(shù)1.2.2數(shù)軸。這一節(jié)是初中數(shù)學(xué)中非常重要的內(nèi)容,從知識上講,數(shù)軸是數(shù)學(xué)學(xué)習(xí)和研究的重要工具,它主要應(yīng)用于絕對值概念的理解,有理數(shù)運算法則的推導(dǎo),及不等式的求解。同時,也是學(xué)習(xí)直角坐標(biāo)系的基礎(chǔ),從思想方法上講,數(shù)軸是數(shù)形結(jié)合的起點,而數(shù)形結(jié)合是學(xué)生理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法。日常生活中帶見的用溫度計度量溫度,已為學(xué)習(xí)數(shù)軸概念打下了一定的基礎(chǔ)。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學(xué)習(xí)方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學(xué)生領(lǐng)悟分類思想的基礎(chǔ)。
二、學(xué)生學(xué)習(xí)情況分析
(1)知識掌握上,七年級的學(xué)生剛剛學(xué)習(xí)有理數(shù)中的正負(fù)數(shù),對正負(fù)數(shù)的概念理解不一定很深刻,許多學(xué)生容易造成知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;
(2)學(xué)生學(xué)習(xí)本節(jié)課的知識障礙。學(xué)生對數(shù)軸概念和數(shù)軸的三要素,學(xué)生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學(xué)中教師應(yīng)予以簡單明白、深入淺出的分析;
(3)由于七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生的主動性。
三、設(shè)計思想
從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的一個重要原則。小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進(jìn)就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學(xué)中,數(shù)軸的三要素中的每一要素都要認(rèn)真分析它的作用,使學(xué)生從直觀認(rèn)識上升到理性認(rèn)識。直線、數(shù)軸都是非常抽象的數(shù)學(xué)概念,當(dāng)然對初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進(jìn)行抽象的思維活動還是可行的。例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等。
四、教學(xué)目標(biāo)
(一)知識與技能
1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。
(二)過程與方法
1、使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識。
2、對學(xué)生滲透數(shù)形結(jié)合的思想方法。
(三)情感、態(tài)度與價值觀
1、使學(xué)生初步了解數(shù)學(xué)來源于實踐,反過來又服務(wù)于實踐的辯證唯物主義觀點。
2、通過畫數(shù)軸,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受。
五、教學(xué)重點及難點
1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。
2、難點:有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系。
六、教學(xué)建議
1、重點、難點分析
本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。數(shù)軸的概念包含兩個內(nèi)容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎(chǔ)。
2、知識結(jié)構(gòu)
有了數(shù)軸,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法,本課知識要點如下:
定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸
三要素原點正方向單位長度
應(yīng)用數(shù)形結(jié)合
七、學(xué)法引導(dǎo)
1、教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法。
2、學(xué)生學(xué)法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習(xí)。
八、課時安排
1課時
九、教具學(xué)具準(zhǔn)備
電腦、投影儀、三角板
十、師生互動活動設(shè)計
講授新課
(出示投影1)
問題1:三個溫度計.其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.(小組討論,交流合作,動手操作)
師:我們能否用類似的圖形表示有理數(shù)呢?
師:這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題).
師:與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀
數(shù),用直線上的點表示正數(shù)、負(fù)數(shù)和零.具體方法如下
(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負(fù)方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負(fù));
3.選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
讓學(xué)生觀察畫好的直線,思考以下問題:
(出示投影2)
(1)原點表示什么數(shù)?
(2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數(shù)?
原點向左1.5個單位長度的B點表示什么數(shù)?
根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義.
師:在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單
位長度的直線叫做數(shù)軸.
進(jìn)而提問學(xué)生:在數(shù)軸上,已知一點P表示數(shù)-5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可.
【教法說明】通過“觀察—類比—思考—概括—表達(dá)”展現(xiàn)知識的形成是從感性認(rèn)識上升到理性認(rèn)識的過程,讓學(xué)生在獲取知識的過程中,領(lǐng)會數(shù)學(xué)思想和思維方法,并有意識地訓(xùn)練學(xué)生歸納概括和口頭表達(dá)能力.
師生同步畫數(shù)軸,學(xué)生概括數(shù)軸三要素,師出示投影,生動手動腦練習(xí)
嘗試反饋,鞏固練習(xí)
(出示投影3).畫出數(shù)軸并表示下列有理數(shù):
1、1.5,-2.2,-2.5,,,0.
2.寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):
請大家回答下列問題:
(出示投影4)
(1)有人說一條直線是一條數(shù)軸,對不對?為什么?
(2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?
【教法說明】此組練習(xí)的目的是鞏固數(shù)軸的概念.
十一、小結(jié)
本節(jié)課要求同學(xué)們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學(xué)們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究.
十二、課后練習(xí)習(xí)題1.2第2題
十三、教學(xué)反思
1、數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識,到理性認(rèn)識,到抽象概括的認(rèn)識規(guī)律。
2、教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。
3、注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。
新人教版七年級數(shù)學(xué)上冊教案5
一、教學(xué)目標(biāo)
【知識與技能】
了解數(shù)軸的概念,能用數(shù)軸上的點準(zhǔn)確地表示有理數(shù)。
【過程與方法】
通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系,體會數(shù)形結(jié)合的思想。
【情感、態(tài)度與價值觀】
在數(shù)與形結(jié)合的過程中,體會數(shù)學(xué)學(xué)習(xí)的樂趣。
二、教學(xué)重難點
【教學(xué)重點】
數(shù)軸的三要素,用數(shù)軸上的點表示有理數(shù)。
【教學(xué)難點】
數(shù)形結(jié)合的思想方法。
三、教學(xué)過程
(一)引入新課
提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學(xué)中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學(xué)習(xí)的數(shù)軸。
(二)探索新知
學(xué)生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關(guān)系:
提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?
學(xué)生活動:畫圖表示后提問。
提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進(jìn)行解答。
教師給出定義:在數(shù)學(xué)中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負(fù)方向;選取合適的長度為單位長度。
提問3:你是如何理解數(shù)軸三要素的?
師生共同總結(jié):“原點”是數(shù)軸的“基準(zhǔn)”,表示0,是表示正數(shù)和負(fù)數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。
(三)課堂練習(xí)
如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。
(四)小結(jié)作業(yè)
提問:今天有什么收獲?
引導(dǎo)學(xué)生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。
課后作業(yè):
課后練習(xí)題第二題;思考:到原點距離相等的兩個點有什么特點?