小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 七年級教案 > 數學教案 >

七年級下數學教案

時間: 新華 數學教案

七年級數學老師要從內心深處去熱愛學生,積極主動地創造條件,讓學生從中潛移默化地受到熏陶和感染。七年級數學教案能夠提升七年級數學老師的教學質量,對七年級數學老師的工作大有脾益。你是否在找正準備撰寫“七年級下數學教案”,下面小編收集了相關的素材,供大家寫文參考!

七年級下數學教案篇1

教學目標

1.使學生正確理解數軸的意義,掌握數軸的三要素;

2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;

3.使學生初步理解數形結合的思想方法.

教學重點和難點

重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.

難點:正確理解有理數與數軸上點的對應關系.

課堂教學過程 設計

一、從學生原有認知結構提出問題

1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

2.用“射線”能不能表示有理數?為什么?

3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

待學生回答后,教師指出,這就是我們本節課所要學習的內容——數軸.

二、講授新課

讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

在此基礎上,給出數軸的定義,即規定了原點、正方向和單位長度的直線叫做數軸.

進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.

三、運用舉例 變式練習

例1 畫一個數軸,并在數軸上畫出表示下列各數的點:

例2 指出數軸上A,B,C,D,E各點分別表示什么數.

課堂練習

示出來.

2.說出下面數軸上A,B,C,D,O,M各點表示什么數?

最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.

四、小結

指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.

五、作業

1.在下面數軸上:

(1)分別指出表示-2,3,-4,0,1各數的點.

(2)A,H,D,E,O各點分別表示什么數?

2.在下面數軸上,A,B,C,D各點分別表示什么數?

3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

課堂教學設計說明

從學生已有知識、經驗出發研究新問題,是我們組織教學的一個重要原則.小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念.教學中,數軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識.直線、數軸都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的.例如,向學生提問:在數軸上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等.

七年級下數學教案篇2

一、素質教育目標

(一)知識教學點

1.掌握的三要素,能正確畫出.

2.能將已知數在上表示出來,能說出上已知點所表示的數.

(二)能力訓練點

1.使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識.

2.對學生滲透數形結合的思想方法.

(三)德育滲透點

使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.

(四)美育滲透點

通過畫,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受.

二、學法引導

1.教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法.

2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.

三、重點、難點、疑點及解決辦法

1.重點:正確掌握畫法和用上的點表示有理數.

2.難點:有理數和上的點的對應關系。

四、課時安排

1課時

五、教具學具準備

電腦、投影儀、自制膠片.

六、師生互動活動設計

師生同步畫,學生概括三要素,師出示投影,生動手動腦練習

七、教學步驟

(一)創設情境,引入新課

師:大家知識溫度計的用途是什么?

生:溫度計可以測量溫度

(出示投影1)

三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.

師:三個溫度計所表示的溫度是多少?

生:2℃,-5℃,0℃.

我們能否用類似溫度計的圖形表示有理數呢?

這種表示數的圖形就是今天我們要學的內容—(板書課題).

【教法說明】從溫度計用標有讀數的刻度來表示溫度的高低這個事實出發,引出本節課所要學的內容—.再從溫度計這個實物形象抽象出來研究.既激發了學生的學習興趣,又使學生受到把實際問題抽象成數學問題的訓練,培養了用數學的意識.

(二)探索新知,講授新課

1.的畫法

與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:

第一步:畫直線定原點 原點表示0(相當于溫度計上的0℃).

第二步:規定從原點向右的為正方向 那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).

第三步:選擇適當的長度為單位長度 (相當于溫度計上每1℃占1小格的長度).

【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.

讓學生觀察畫好的直線,思考以下問題:

(出示投影1)

(1)原點表示什么數?

(2)原點右方表示什么數?原點左方表示什么數?

(3)表示+2的點在什么位置?表示-1的點在什么位置?

(4)原點向右0.5個單位長度的A點表示什么數?原點向左 個單位長度的B點表示什么數?

根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義.

學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充.

【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力.

教師根據學生回答給予肯定或否定,糾正后板書.

2.的定義:規定了原點、正方向和單位長度的直線叫做.

向學生提出問題:上為什么要規定原點、正方向和單位長度呢?它們各起什么作用?引導學生結合溫度訂正確回答這個問題,從而知道三要素的重要性,了解三者缺一不可,認識和掌握判斷一條直線是不是的依據.

學生活動:同桌之間、前后桌之間討論.使學生從直觀認識上升到理性認識.

3.嘗試反饋,鞏固練習

請大家回答下列問題:

(出示投影2)

(1)有人說一條直線是一條,對不對?為什么?

(2)下列所畫對不對?如果不對,指出錯在哪里?

學生活動:學生思考,不準討論,想好后舉手回答.

讓其他學生對其回答進行評判,對確有疑問的題目,教師給予講解.

【教法說明】此組練習的目的是鞏固的概念.

答案:(2)①缺原點,②缺正方向,③不是射線而是直線,④缺單位長度,⑥提醒學生注意在同一數輪上必須用同一單位長度進行度量.⑤⑦是,同時⑦為學面直角坐標系打基礎.

4.有理數與上點的關系

通過剛才的學習我們知道所有的有理數都可以用上的點來表示.

例1 畫一條,并畫出表示下列各數的點:

1,5,0,-2.5, .

學生練習:同學們在練習本上畫一條,然后在上標出各點,一名學生板演.教師巡回指導,發現問題及時糾正.

【教法說明】讓學生動手自己畫,有助于培養學生實際操作能力.例1是把給定的有理數用上的點來表示,完成由“數”到“形”的思維過程,有助于學生加深對概念的理解.

(出示投影4)

例2 指出上 A、B、C、D、E各點分別表示什么數?

先讓學生思考一會,然后學生舉手回答

解:A表示-3;B表示 ; C表示3;D表示 ;E表 .

【教法說明】例2是讓學生說出上的點表示的有理數,完成了由“形”到“數”的思維過程.例1、例2從各自不同的兩個側面,體現出數形結合,滲透了數形之間相互轉化的數學思想.

5.嘗試反饋,鞏固練習

(出示投影5)

①說出下面上A、B、C、D、O、M各點表示什么數?

②將-3, ,1.5,-6, ,2.25,,-5,1

各數用上的點表示出來.

【教法說明】①題由點讀數練習,②題由數找點練習,進一步鞏固加深本節所學的內容.

(三)歸納小結

師:①是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示數與形之間的內在聯系,是幫助學生理解數學、學習數學的重要思想方法.本章有理數的有關性質和運算都是結合進行的.

②掌握三要素,正確地畫出,提醒同學們,所有的有理數都可用上的各點來表示,但是反過來不成立,即上的各點,并不是都表示有理數.以后再研究.

八、隨堂練習

1.判斷題

(1)直線就是( )

(2)是直線( )

(3)任何一個有理數都可以用上的點來表示()

(4)上到原點距離等于3的點所表示的數是+3( )

(5)上原點左邊表示的數是負數,右邊表示的數是正數,原點表示的數是0.( )

2.畫一條數輪,并畫出表示下列各數的點

,-5,0,+3.2,-1.4

九、布置作業

(-)必做題:課本第56頁1、2.

(二)選做題:課本第56頁及第57頁B組l.

(三)思考題:

①在數輪上距原點3個單位長度的點表示的數是_____________

②在數輪上表示-6的點在原點的___________側,距離原點___________個單位長度,表示+6的點在原點的__________側,距離原點____________個單位長度.

【教法說明】由于學生在知識、技能、能力方面發展不盡相同,所以分層次地布置作業 ,兼顧學習有困難和學有余力的學生,使他們都能達到大綱中規定的基本要求,并使部分學生能發展他們的數學才能.

十、板書設計

七年級下數學教案篇3

教學目標

1.使學生正確理解的意義,掌握的三要素;

2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;

3.使學生初步理解數形結合的思想方法.

教學重點和難點

重點:初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數.

難點:正確理解有理數與上點的對應關系.

課堂教學過程 設計

一、從學生原有認知結構提出問題

1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

2.用“射線”能不能表示有理數?為什么?

3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

待學生回答后,教師指出,這就是我們本節課所要學習的內容——.

二、講授新課

讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

在此基礎上,給出的定義,即規定了原點、正方向和單位長度的直線叫做.

進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.

三、運用舉例 變式練習

例1 畫一個,并在上畫出表示下列各數的點:

例2 指出上A,B,C,D,E各點分別表示什么數.

課堂練習

示出來.

2.說出下面上A,B,C,D,O,M各點表示什么數?

最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.

四、小結

指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

本節課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.

五、作業

1.在下面上:

(1)分別指出表示-2,3,-4,0,1各數的點.

(2)A,H,D,E,O各點分別表示什么數?

2.在下面上,A,B,C,D各點分別表示什么數?

3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

課堂教學設計說明

從學生已有知識、經驗出發研究新問題,是我們組織教學的一個重要原則.小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.教學中,的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識.直線、都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的.例如,向學生提問:在上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等.

七年級下數學教案篇4

教學目的

借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。

重點、難點

1.重點:列一元一次方程解決有關行程問題。

2.難點:間接設未知數。

教學過程

一、復習

1.列一元一次方程解應用題的一般步驟和方法是什么?

2.行程問題中的基本數量關系是什么?

路程=速度×時間 速度=路程 / 時間

二、新授

例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉看望爺爺,在行駛了三分之一路程后,估計繼續乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠?

畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。

1.坐公共汽車行了多少路程?乘的士行了多少路程?

2.乘公共汽車用了多少時間,乘出租車用了多少時間?

3.如果都乘公共汽車到火車站要多少時間?

4,等量關系是什么?

如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。

可設公共汽車從小張家到火車站要x小時。

設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。

三、鞏固練習

教科書第17頁練習1、2。

四、小結

有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。

四、作業

教科書習題6.3.2,第1至5題。

七年級下數學教案篇5

教學目的

1.理解用一元一次方程解工程問題的本質規律;通過對“工程問題”的分析進一步培養學生用代數方法解決實際問題的能力。

2.理解和掌握基本的數學知識、技能、數學思想方法,獲得廣泛的數學活動經驗,提高解決問題的能力。

重點、難點

重點:工程中的工作量、工作的效率和工作時間的關系。

難點:把全部工作量看作“1”。

教學過程

一、復習提問

1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全

部工作量的多少?

2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成

全部工作量的多少?

3.工作量、工作效率、工作時間之間有怎樣的關系?

二、新授

閱讀教科書第18頁中的問題6。

分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。

2.怎樣用列方程解決這個問題?本題中的等量關系是什么?

[等量關系是:師傅做的工作量+徒弟做的工作量=1)

[先要求出師傅與徒弟各完成的工作量是多少?]

兩人的工效已知,因此要先求他們各自所做的天數,因此,設師傅做了x天,則徒弟做(x+1)天,根據等量關系列方程。 解方程得 x=2

師傅完成的工作量為= ,徒弟完成的工作量為=

所以他們兩人完成的工作量相同,因此每人各得225元。

三、鞏固練習

一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現

由甲獨做10小時;

請你提出問題,并加以解答。

例如 (1)剩下的乙獨做要幾小時完成?

(2)剩下的由甲、乙合作,還需多少小時完成?

(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?

四、小結

1.本節課主要分析了工作問題中工作量、工作效率和工作時間之

間的關系,即 工作量=工作效率×工作時間

工作效率= 工作時間=

2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。

五、作業

教科書習題6.3.3第1、2題。

七年級下數學教案篇6

教學目的

通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。

重點、難點

1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。

2.難點:找出能表示整個題意的等量關系。

教學過程

一、復習

1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數

本利和=本金×利息×年數+本金

2.商品利潤等有關知識。

利潤=售價-成本 ; =商品利潤率

二、新授

問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

利息-利息稅=48.6

可設小明爸爸前年存了x元,那么二年后共得利息為

2.43%×X×2,利息稅為2.43%X×2×20%

根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6

問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

2.43%x·2·80%=48.6

解方程,得 x=1250

例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

大家想一想這15元的利潤是怎么來的?

標價的80%(即售價)-成本=15

若設這種服裝每件的成本是x元,那么

每件服裝的標價為:(1+40%)x

每件服裝的實際售價為:(1+40%)x·80%

每件服裝的利潤為:(1+40%)x·80%-x

由等量關系,列出方程:

(1+40%)x·80%-x=15

解方程,得 x=125

答:每件服裝的成本是125元。

三、鞏固練習

教科書第15頁,練習1、2。

四、小結

當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。

五、作業

教科書第16頁,習題6.3.1,第4、5題。

七年級下數學教案篇7

教學目標

1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;

2. 通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;

3.通過加法運算練習,培養學生的運算能力。

教學建議

(一)重點、難點分析

本節課的重點是依據運算法則和運算律準確迅速地進行,難點是省略加號與括號的代數和的計算.

由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,這是因為有理數加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.

(二)知識結構

(三)教法建議

1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.

2.關于“去括號法則”,只要學生了解,并不要求追究所以然.

3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如

-3-4表示-3、-4兩數的代數和,

-4+3表示-4、+3兩數的代數和,

3+4表示3和+4的代數和

等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。

4.先把正數與負數分別相加,可以使運算簡便。

5.在交換加數的位置時,要連同前面的符號一起交換。如

12-5+7 應變成 12+7-5,而不能變成12-7+5。

七年級下數學教案篇8

一、有理數的意義

1.有理數的分類

知識點:大于零的數叫正數,在正數前面加上“﹣”(讀作負)號的數叫負數;如果一個正數表示一個事物的量,那么加上“﹣”號后這個量就有了完全相反的意義;3, ,5.2也可寫作+3,+ ,+5.2;零既不是正數,也不是負數。

2.數軸

知識點:數軸是數與圖形結合的工具;數軸:規定了原點、正方向和單位長度的直線;數軸的三元素:原點、正方向、單位長度,這三元素缺一不可,是判斷一條直線是否是數軸的根本依據;數軸的作用:1)形象地表示數(因為所有的有理數都可以用數軸上的點表示,以后會知道數軸上的每一個點并不都表示有理數),2)通過數軸從圖形上可直觀地解釋相反數,幫助理解絕對值的意義,3)比較有理數的大小:a)右邊的數總比左邊的數大,b)正數都大于零,c)負數都小于零,d)正數大于一切負數

3. 相反數

知識點: 只有符號不同的兩個數互為相反數;在數軸上表示互為相反數的兩個點到原點的距離相等且分別在原點的兩邊;規定:0的相反數是0。

4. 絕對值

知識點: 一個數a的絕對值就是數軸上表示數a的點與原點的距離,數a的絕對值記作∣a∣;絕對值的意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,零的絕對值是零,即若a>0,則∣a∣=a. 若a=0,則∣a∣=0. 若a<0,則∣a∣=﹣a ;絕對值越大的負數反而小;兩個點a與b之間的距離為:∣a-b∣。

二、有理數的運算

1. 有理數的加法

知識點:有理數的加法法則:1)同號兩數相加,取相同的符號,并把絕對值相加;2)異號兩數相加,①絕對值相等時,和為零(即互為相反數的兩個數相加得0);②絕對值不相等時,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;3)一個數和0相加仍得這個數。

加法交換律:a+b=b+a; 加法結合律:a+b+c=a+(b+c)

多個有理數相加時,把符號相同的數結合在一起計算比較簡便,若有互為相反的數,可利用它們的和為0的特點。

2. 有理數的減法

知識點:有理數的減法法則:減去一個數等于加上這個數的相反數,即 a-b=a+(-b)。

注意:運算符號“+”加號、“-”減號與性質符號“+”正號、“-”負號統一與轉化,如a-b中的減號也可看成負號,看作a與b的相反數的和:a+(-b);一個數減去0,仍得這個數;0減去一個數,應得這個數的相反數。

3. 有理數的加減混合運算

知識點:有理數的加減法混合運算可以運用減法法則統一成加法運算;加減法混合運算統一成加法運算以后,可以把“+”號省略,使算式變得更加簡潔。

4. 有理數的乘法

知識點:乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘;任何數和0相乘都得0。

幾個不等于0的數相乘,積的符號由負因數的個數決定;當負因數有奇數個時,積為負;當負因數有偶數個時,積為正。幾個數相乘,有一個因數為0,積就為0。

乘法交換律:ab=ba 乘法結合律:abc=a(bc) 乘法分配律:a(b+c)=ab+bc

5. 有理數的除法

知識點:除法法則1:除以一個數等于乘上這數的倒數,即a÷b= =a? (b≠0即0不能做除數)。

除法法則2:兩數相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數都得0。

倒數:乘積是1的兩數互為倒數,即a? =1(a≠0),0沒有倒數。

注意:倒數與相反數的區別

6. 有理數的乘方

知識點:乘方:求n個相同因數的積的運算。乘方的結果叫冪,an中,a叫做底數,n叫做指數。

乘方的符號法則:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數;0的任何次冪都為0。

7. 有理數的混合運算

知識點:運算順序:先乘方,再乘除,最后算加減,遇到有括號,先算小括號,再中括號,最后大括號,有多層括號時,從里向外依次進行。

技巧:先觀察算式的結構,策劃好運算順序,靈活進行運算。

【鞏固練習1】一.選擇題

1. 關于數“0”,以下各種說法中,錯誤的是 ( )

A. 0是整數 B. 0是偶數 C. 0是自然數 D. 0既不是正數也不是負數

2. –3.782: ( )

A. 是負數,不是分數 B. 不是分數,是有理數 C. 是分數,不是有理數 D. 是分數,也是負數

二、將下列各數填入相應的集合中。 ,-1,12,0,-3.01,0.62,-15,- ,180,-42,-45%,π,1。

整數:______________________ 自然數:___________________________

正數:______________________ 負數: ___________________________

偶數:______________________ 奇數: ___________________________

分數:______________________ 非負數:___________________________

非負整數: _________________ 非正分數:_________________________

非負有理數:________________ 有理數: __________________________

三、 填空題

1、一個數的絕對值是 6 ,這個數是   。 2、絕對值小于3的整數有   個。

3、 的相反數的倒數是   。 4、計算:    。

5、如果 ,那么 a=   。 6、如果規定上升8米記作8米,那么-7米表示 ______________。

7、最小的正整數是____,的負整數是_____,絕對值最小的有理數是_______

8、 河道中的水位比正常水位低0.2m記作-0.2m,那么比正常水位高0.1m記作________。

9、一潛艇所在深度是-80米,一條鯊魚在艇上30m處,鯊魚所在的深度是________。

【鞏固練習2】一.填空題

1. 數軸上與表示﹣2點相距3個單位的點所表示的數是________。

2. 數軸表示+3和﹣3的點離開原點的距離是______個單位,這兩個點的位置分別在_______點右邊和左邊。

3. 在有理數中的負整數是________, 最小的正整數是________, 的非正數是________, 最小的非負數是________.

4. 用“>”或“<”號填空:

1)3.5 ____ 0 ; 2) ﹣2.8 ____ 0 ; 3) ﹣1.95 ____ 1.59 ; 4) ____ ;

5) ____ ﹣0.3 ; 6) ﹣0.67 ____ ; 7) ____ ;

8) ﹣π ____ ﹣3.14 ; 9) ﹣1.6 ____ ﹣1.6 ; 10) ﹣( ) ____ ﹣(﹣∣ ∣) .

【鞏固練習3】一.填空題

1. 如果一個數的相反數是它本身, 則這個數是________.

2. 如果一個數的相反數是最小的正整數, 則這個數是________.

3. 若 , 則a與b________; 若 , 則a與b________; 若a+b=0, 則a與b________.

4. 在數軸上與-3距離4個單位的點表示的數是

5.寫出大于-4且小于3的所有整數為______________;

二、 求下列各數的相反數

0.26 ; ;π-3 ;﹣a ;﹣x+1 ; m+1 ;2xy ;a-b 。

三、 在數軸上表示出下列各數的相反數的點,并比較大小。

,4,﹣1.5, ,0,1,8,﹣2,﹣(﹣4.5),∣ ∣

【鞏固練習4】一.選擇題

1. ﹣∣﹣3∣是 ( ) A. 正數 B. 負數 C. 正數或0 D. 負數或0

2. 絕對值最小的整數是 ( ) A. 0 B. 1 C. –1 D. 1和-1

二、填空題 1.若a= , 則∣a∣=________; 若∣a∣=3, 則a=________.

2.﹣∣﹣ ∣=______; ∣﹣ ∣-∣﹣ ∣=______; ∣﹣0.77∣÷∣+ ∣=_______;

3.絕對值小于4的負整數有    個,正整數有     個,整數有    個

三、解答題

1. 已知∣x+y+3∣=0,求∣x+y∣的值。

2. 已知 A,B是數軸上兩點,A點表示﹣1,B點表示3.5,求A,B兩點間的距離。

3. 已知:∣a+2∣+∣b-3∣=0,求2a2-b+1的值。

【鞏固練習5】計算:1) ﹣ - + -( ); 2) 1-2+3-4+5-6+…+99-100;

3) ﹣(﹣8)-∣﹣6∣-∣+8∣-(+7); 4) 。

【鞏固練習6】計算:1)( )× ; 2) × ÷( ); 3) ×(-5);

4)( )÷ ; 5) ÷( ) ; 6) ÷(-5);

【鞏固練習7】1.計算:(-5)3; -53; ; ;(-1)2001; 3。

2. 若∣x+1∣+(2x-y+4)2= 0 ,求代數式x5y+xy5的值。

【鞏固練習8】計算:(1)3 ; (2) (3) (4)

(5) (6) (7) (8)

(9) (10)–32-∣(-5)3∣× -18÷∣-(-3)2∣;

(11) -3- × -6÷∣ ∣3; (12)(-1)5×[ ÷(-4)+ ×(-0.4)]÷ ;

(13)如果 ,求 的值.

一、 選擇題(10小題,每小題3分,共30分,答案填入表格中)

1. 在下列各數中,-3.8,+5,0,- 1 2 , 3 5 ,-4,中,屬于負數的個數為(  )

A.2個 B.3個 C.4個 D.5個

2. 計算:-6+4的結果是(  )

A.2 B.10 C.-2 D.-10

3. 一個數的倒數等于它本身的數是(  )

A.1 B. C.±1 D.0

4. 下列判斷錯誤的是(  )

A.任何數的絕對值一定是非負數; B.一個負數的絕對值一定是正數;

C.一個正數的絕對值一定是正數; D.一個數不是正數就是負數;

5. 有理數a、b、c在數軸上的位置如圖所示則下列結論正確的是(  )

A.a>b>0>c B.b>0>a>c

C.b

6.兩個有理數的和是正數,積是負數,則這兩個有理數( )

A.都是正數; B.都是負數;

C.一正一負,且正數的絕對值較大; D.一正一負,且負數的絕對值較大。

7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )

A.3或13 B.13或-13 C.3或-3 D.-3或-13

8. 大于-1999而小于2000的所有整數的和是(  )

A.-1999 B.-1998 C.1999 D.2000

9. 當n為正整數時, 的值是(  )

A.0 B.2 C.     D.2或

10. 補充下列表格:

31 32 33 34 35 36 37

3 9 27 81 243 … …

根據表格中個位數的規律可知,325的個位數是( )

A.1 B.3 C.7 D.9

二、填空題(8小題,每小題2分,共16分)

11. 的相反數是 .

12.若水位上升20cm記作+20cm,則-15cm表示__________________.

13.4個-3相乘寫成乘方的形式是__________________.

14.比較大小: .

15. 在數軸上距2.5有3.5個單位長度的點所表示的數是     .

16. 用“偶數”或“奇數”填:當 為_________時,

17. 一根2米長的小棒,小明第一次截去一半,第二次截去剩下的一半,如此截下去,

第五次后剩下的長度為______米.

18. 觀察下列圖形:

它們是按一定規律排列的,依照此規律,第10個圖形共有 個★.

三、解答題(6小題,每小題5分,共30分)

19. (+4.3) -(-4) + (-2.3) -(+4) 20. (-48)÷6- ×(-4)

21. (- + - )×(-12) 22. 16÷(-2)3-(- )×(-4)2

23. (用簡便方法) 24. - -[-5 + (0.2× -1)÷(-1 )]

25. 若│a│=2,b=-3,c是的負整數,求a + b-c的值.(6分)

26.某牛奶廠在一條南北走向的大街上設有O,A,B,C四家特約經銷店. A店位于O店的南面3千米

處;B店位于O店的北面1千米處,C店在O店的北面2千米處.

(1)請以O為原點,向北的方向為正方向,1個單位長度表示1千米,畫一條數軸.

在數軸上分別表示出O,A,B,C的位置嗎?(4分)

(2)牛奶廠的送貨車從O店出發,要把一車牛奶分別送到A,B,C三家經銷店,最后回到O店,

那么走的最短路程是多少千米?(4分)

27.股民小楊上星期五買進某公司股票1000股,每股27元,下表為本周內每日該股票的漲跌情況:

星期 一 二 三 四 五

每股漲跌 +2.20 +1.42 -0.80 -2.52 +1.30

(1)星期三收盤時,該股票漲或跌了多少元?(4分)

(2)本周內該股票的價是每股多少元?最底價是每股多少元?(2分)

(3)已知小楊買進股票時付了1.5‰的手續費,賣出時還需要付成交額的1.5‰的手續費和1‰的交易稅,

如果小楊在星期五收盤前將全部股票賣出,則他的收益情況如何? (4分)

七年級下數學教案篇9

教學目標 1, 掌握相反數的概念,進一步理解數軸上的點與數的對應關系;

2, 通過歸納相反數在數軸上所表示的點的特征,培養歸納能力;

3, 體驗數形結合的思想。

教學難點 歸納相反數在數軸上表示的點的特征

知識重點 相反數的概念

教學過程(師生活動) 設計理念

設置情境

引入課題 問題1:請將下列4個數分成兩類,并說出為什么要這樣分類

4, -2,-5,+2

允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當的引導,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。

(引導學生觀察與原點的距離)

思考結論:教科書第13頁的思考

再換2個類似的數試一試。

歸納結論:教科書第13頁的歸納。 以開放的形式創設情境,以學生進行討論,并培養分類的能力

培養學生的觀察與歸納能力,滲透數形思想

深化主題提煉定義 給出相反數的定義

問題2:你怎樣理解相反數定義中的“只有符號不同”和“互為”一詞的含義?零的相反數是什么?為什么?

學生思考討論交流,教師歸納總結。

規律:一般地,數a的相反數可以表示為-a

思考:數軸上表示相反數的兩個點和原點有什么關系?

練一練:教科書第14頁第一個練習 體驗對稱的圖形的特點,為相反數在數軸上的特征做準備。

深化相反數的概念;“零的相反數是零”是相反數定義的一部分。

強化互為相反數的數在數軸上表示的點的幾何意義

給出規律

解決問題 問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?

學生交流。

分別表示+5和-5的相反數是-5和+5

練一練:教科書第14頁第二個練習 利用相反數的概念得出求一個數的相反數的方法

小結與作業

課堂小結 1, 相反數的定義

2, 互為相反數的數在數軸上表示的點的特征

3, 怎樣求一個數的相反數?怎樣表示一個數的相反數?

本課作業 1, 必做題 教科書第18頁習題1.2第3題

2, 選做題 教師自行安排

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1,相反數的概念使有理數的各個運算法則容易表述,也揭示了兩個特殊數的特征.這兩個特殊數在數量上具有相同的絕對值,它們的和為零,在數軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數量和幾何意義展開,滲透數形結合的思想.

2,教學引人以開放式的問題人手,培養學生的分類和發散思維的能力;把數在數軸上表示出來并觀察它們的特征,在復習數軸知識的同時,滲透了數形結合的數學方法,數與形的相互轉化也能加深對相反數概念的理解;問題2能幫助學生準確把握相反數的概念;問題3實際上給出了求一個數的相反數的方法.

3,本教學設計體現了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發揮的余地.

七年級下數學教案篇10

教學目的

1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。

2.使學生會列一元一次方程解決一些簡單的應用題。

3.會判斷一個數是不是某個方程的解。

重點、難點

1.重點:會列一元一次方程解決一些簡單的應用題。

2.難點:弄清題意,找出“相等關系”。

教學過程

一、復習提問

一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

解:設小紅能買到工本筆記本,那么根據題意,得

1.2x=6

因為1.2×5=6,所以小紅能買到5本筆記本。

二、新授:

問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛? (讓學生思考后,回答,教師再作講評)

算術法:(328-64)÷44=264÷44=6(輛)

列方程:設需要租用x輛客車,可得。

44x+64=328 (1)

解這個方程,就能得到所求的結果。

問:你會解這個方程嗎?試試看?

問題2:在課外活動中,張老師發現同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

通過分析,列出方程:13+x=(45+x)

問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?

把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

因為左邊=右邊,所以x=3就是這個方程的解。

這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。

問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發現了什么問題?

同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?

三、鞏固練習

教科書第3頁練習1、2。

四、小結。本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

五、作業 。教科書第3頁,習題6.1第1、3題。

數學教案相關文章:

一年級下冊的優質公開課教案數學

2022蘇教版二年級下冊數學教案

二年級數學下冊五單元教案

小學教案模板

《認識圖形》一年級數學上冊教案

高中教案模板

八年級教案模板

七年級教案模板

九年級教案模板

小學教案模板

22425 主站蜘蛛池模板: 软启动器-上海能曼电气有限公司| 管理会计网-PCMA初级管理会计,中级管理会计考试网站 | DDoS安全防护官网-领先的DDoS安全防护服务商 | 论文查重_免费论文查重_知网学术不端论文查重检测系统入口_论文查重软件 | 视频直播 -摄影摄像-视频拍摄-直播分发 | 飞扬动力官网-广告公司管理软件,广告公司管理系统,喷绘写真条幅制作管理软件,广告公司ERP系统 | 电渗析,废酸回收,双极膜-山东天维膜技术有限公司 | 西安耀程造价培训机构_工程预算实训_广联达实作实操培训 | 老城街小面官网_正宗重庆小面加盟技术培训_特色面馆加盟|牛肉拉面|招商加盟代理费用多少钱 | 细沙回收机-尾矿干排脱水筛设备-泥石分离机-建筑垃圾分拣机厂家-青州冠诚重工机械有限公司 | 动物解剖台-成蚊接触筒-标本工具箱-负压实验台-北京哲成科技有限公司 | 河南包装袋厂家_河南真空袋批发价格_河南服装袋定制-恒源达包装制品 | 温州食堂承包 - 温州市尚膳餐饮管理有限公司 | 一体化污水处理设备-一体化净水设备-「山东梦之洁水处理」 | 没斑啦-专业的祛斑美白嫩肤知识网站-去斑经验分享 | 意大利Frascold/富士豪压缩机_富士豪半封闭压缩机_富士豪活塞压缩机_富士豪螺杆压缩机 | 河南生物显微镜,全自动冰冻切片机-河南荣程联合科技有限公司 | 高压直流电源_特种变压器_变压器铁芯-希恩变压器定制厂家 | 柴油机_柴油发电机_厂家_品牌-江苏卡得城仕发动机有限公司 | 华禹护栏|锌钢护栏_阳台护栏_护栏厂家-华禹专注阳台护栏、楼梯栏杆、百叶窗、空调架、基坑护栏、道路护栏等锌钢护栏产品的生产销售。 | 厌氧反应器,IC厌氧反应器,厌氧三相分离器-山东创博环保科技有限公司 | 课件导航网_ppt课件_课件模板_课件下载_最新课件资源分享发布平台 | 特材真空腔体_哈氏合金/镍基合金/纯镍腔体-无锡国德机械制造有限公司 | sus630/303cu不锈钢棒,440C/430F/17-4ph不锈钢研磨棒-江苏德镍金属科技有限公司 | 扫地车厂家-山西洗地机-太原电动扫地车「大同朔州吕梁晋中忻州长治晋城洗地机」山西锦力环保科技有限公司 | 高压包-点火器-高压发生器-点火变压器-江苏天网 | 上海橡胶接头_弹簧减震器_金属软接头厂家-上海淞江集团 | 黑田精工电磁阀-CAMMOZI气缸-ROSS电磁-上海茂硕机械设备有限公司 | PU树脂_水性聚氨酯树脂_聚氨酯固化剂_聚氨酯树脂厂家_宝景化工 | 包塑丝_高铁绑丝_地暖绑丝_涂塑丝_塑料皮铁丝_河北创筹金属丝网制品有限公司 | 电表箱-浙江迈峰电力设备有限公司-电表箱专业制造商 | 涡轮流量计_LWGY智能气体液体电池供电计量表-金湖凯铭仪表有限公司 | 点焊机-缝焊机-闪光对焊机-电阻焊设备生产厂家-上海骏腾发智能设备有限公司 | 盛源真空泵|空压机-浙江盛源空压机制造有限公司-【盛源官网】 | 北京燃气公司 用户服务中心 | 灌装封尾机_胶水灌装机_软管灌装封尾机_无锡和博自动化机械制造有限公司 | 电缆接头-防爆电缆接头-格兰头-金属电缆接头-防爆填料函 | 风信子发稿-专注为企业提供全球新闻稿发布服务 | 代办建筑资质升级-建筑资质延期就找上海国信启航 | 工业雾炮机_超细雾炮_远程抑尘射雾器-世纪润德环保设备 | 【官网】博莱特空压机,永磁变频空压机,螺杆空压机-欧能优 |