數學高考教案
數學高考教案篇1
一、說課內容:
蘇教版高一年級數學下冊第六章第一節的二次函數的概念及相關習題
二、教材分析:
1、教材的地位和作用
這節課是在學生已經學習了一次函數、正比例函數、反比例函數的基礎上,來學習二次函數的概念。二次函數是初中階段研究的最后一個具體的函數,也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數和以前學過的一元二次方程、一元二次不等式有著密切的聯系。進一步學習二次函數將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數形結合”的重要思想。而本節課的二次函數的概念是學習二次函數的基礎,是為后來學習二次函數的圖象做鋪墊。所以這節課在整個教材中具有承上啟下的重要作用。
2、教學目標和要求:
(1)知識與技能:使學生理解二次函數的概念,掌握根據實際問題列出二次函數關系式的方法,并了解如何根據實際問題確定自變量的取值范圍。
(2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數概念的探索過程,提高學生解決問題的能力.
(3)情感、態度與價值觀:通過觀察、操作、交流歸納等數學活動加深對二次函數概念的理解,發展學生的數學思維,增強學好數學的愿望與信心.
3、教學重點:對二次函數概念的理解。
4、教學難點:由實際問題確定函數解析式和確定自變量的取值范圍。
三、教法學法設計:
1、從創設情境入手,通過知識再現,孕伏教學過程
2、從學生活動出發,通過以舊引新,順勢教學過程
3、利用探索、研究手段,通過思維深入,領悟教學過程
四、教學過程:
(一)復習提問
1.什么叫函數?我們之前學過了那些函數?
(一次函數,正比例函數,反比例函數)
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)
3.一次函數(y=kx+b)的自變量是什么?函數是什么?常量是什么?為什么要有k≠0的條件?k值對函數性質有什么影響?
設計意圖復習這些問題是為了幫助學生弄清自變量、函數、常量等概念,加深對函數定義的理解.強調k≠0的條件,以備與二次函數中的a進行比較.
(二)引入新課
函數是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數,反比例函數和一次函數。看下面三個例子中兩個變量之間存在怎樣的關系。(電腦演示)
例1、(1)圓的半徑是r(cm)時,面積s(cm)與半徑之間的關系是什么?
解:s=πr(r>0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關系是什么?
解:y=x(20/2-x)=x(10-x)=-x+10x(0
例3、設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關系是什么(不考慮利息稅)?
解:y=100(1+x)
=100(x+2x+1)
=100x+200x+100(0
教師提問:以上三個例子所列出的函數與一次函數有何相同點與不同點?
設計意圖通過具體事例,讓學生列出關系式,啟發學生觀察,思考,歸納出二次函數與一次函數的聯系:
(1)函數解析式均為整式(這表明這種函數與一次函數有共同的特征)。
(2)自變量的最高次數是2(這與一次函數不同)。
(三)講解新課
以上函數不同于我們所學過的一次函數,正比例函數,反比例函數,我們就把這種函數稱為二次函數。
二次函數的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數)的函數叫做二次函數。
鞏固對二次函數概念的理解:
1、強調“形如”,即由形來定義函數名稱。二次函數即y是關于x的二次多項式(關于的x代數式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數定義中要求a≠0?
(若a=0,ax2+bx+c就不是關于x的二次多項式了)
4、在例3中,二次函數y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數的特殊形式,而y=ax2+bx+c是二次函數的一般形式.
設計意圖這里強調對二次函數概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數做好鋪墊。
判斷:下列函數中哪些是二次函數?哪些不是二次函數?若是二次函數,指出a、b、c.
(1)y=3(x-1)+1(2)
(3)s=3-2t(4)y=(x+3)-x
(5)s=10πr(6)y=2+2x
(8)y=x4+2x2+1(可指出y是關于x2的二次函數)
設計意圖理論學習完二次函數的概念后,讓學生在實踐中感悟什么樣的函數是二次函數,將理論知識應用到實踐操作中。
五、教學設計思考
以實現教學目標為前提
以現代教育理論為依據
以現代信息技術為手段
貫穿一個原則——以學生為主體的原則
突出一個特色——充分鼓勵表揚的特色
滲透一個意識——應用數學的意識
數學高考教案篇2
教材分析:
前面已學習了向量的概念及向量的線性運算,這里引入一種新的向量運算——向量的數量積。教科書以物體受力做功為背景引入向量數量積的概念,既使向量數量積運算與學生已有知識建立了聯系,又使學生看到向量數量積與向量模的大小及夾角有關,同時與前面的向量運算不同,其計算結果不是向量而是數量。
在定義了數量積的概念后,進一步探究了兩個向量夾角對數量積符號的影響;然后由投影的概念得出了數量積的幾何意義;并由數量積的定義推導出一些數量積的重要性質;最后“探究”研究了運算律。
教學目標:
(一)知識與技能
1.掌握數量積的定義、重要性質及運算律;
2.能應用數量積的重要性質及運算律解決問題;
3.了解用平面向量數量積可以解決長度、角度、垂直共線等問題,為下節課靈活運用平面向量數量積解決問題打好基礎。
(二)過程與方法
以物體受力做功為背景引入向量數量積的概念,從數與形兩方面引導學生對向量數量積定義進行探究,通過例題分析,使學生明確向量的數量積與數的乘法的聯系與區別。
(三)情感、態度與價值觀
創設適當的問題情境,從物理學中“功”這個概念引入課題,開始就激發學生的學習興趣,讓學生容易切入課題,培養學生用數學的意識,加強數學與其它學科及生活實踐的聯系。
教學重點:
1.平面向量的數量積的定義;
2.用平面向量的數量積表示向量的模及向量的夾角。
教學難點:
平面向量數量積的定義及運算律的理解和平面向量數量積的應用。
教學方法:
啟發引導式
教學過程:
(一)提出問題,引入新課
前面我們學習了平面向量的線性運算,包括向量的加法、減法、以及數乘運算,它們的運算結果都是向量,既然兩個向量可以進行加法、減法運算,我們自然會提出:兩個向量是否能進行“乘法”運算呢?如果能,運算結果又是什么呢?
這讓我們聯想到物理中“功”的概念,即如果一個物體在力F的作用下產生位移s,F與s的夾角是θ,那么力F所做的功如何計算呢?
我們知道:W=Fscosθ,
功是一個標量(數量),而力它等于力F和位移s都是矢量(向量),功等于力和位移這兩個向量的大小與它們夾角余弦的乘積。這給我們一種啟示:能否把功W看成是兩向量F和s的一種運算的結果呢,為此我們引入平面向量的數量積。
(二)講授新課
今天我們就來學習:(板書課題)
2.4平面向量的數量積
一、向量數量積的定義
1.已知兩個非零向量與,我們把數量cosθ叫做與的數量積(或內積),記作,即=cosθ,其中θ是與的夾角。
2.規定:零向量與任一向量的數量積為0,即=0
注意:
(1)符號“”在向量運算中既不能省略,也不能用“×”代替。
(2)是與的夾角,范圍是0≤θ≤π,(再找兩向量夾角時,若兩向量起點不同,必須通過平移,把起點移到同一點,再找夾角)。
(3)兩個向量的數量積是一個數量,而不是向量。而且這個數量的大小與兩個向量的模及其夾角有關。
(4)兩非零向量與的數量積的符號由夾角θ決定:
cosθ
=cosθ=0
cosθ
前面我們學習了向量的加法、減法及數乘運算,他們都有明確的幾何意義,那么向量的數量積的幾何意義是什么呢?
二、數量積的幾何意義
1.“投影”的概念:已知兩個非零向量與,θ是與的夾角,cos(叫做向量在方向上的投影
思考:投影是向量,還是數量?
根據投影的定義,投影當然算數量,可能為正,可能為負,還可能為0
(為銳角(為鈍角(為直角
cos(cos(cos(=0
當(為銳角時投影為正值;當(為鈍角時投影為負值;當(為直角時投影為0;當(=0(時投影為;當(=180(時投影為(
思考:在方向上的投影是什么,并作圖表示
2.數量積的幾何意義:數量積等于的長度與在方向上投影cos(的乘積,也等于的長度與在方向上的投影cos(的乘積。
根據數量積的定義,可以推出一些結論,我們把它們作為數量積的重要性質
三、數量積的重要性質
設與都是非零向量,θ是與的夾角
數學高考教案篇3
課題古典概型課型高一新授課教學目標理解古典概型及其概率計算公式,并能計算有關隨機事件的概率教學重點理解古典概型的概念及利用古典概型求解隨機事件的概率。教學難點如何判斷一個試驗是否為古典概型,弄清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。教學方法導學式、啟發式教學教具多媒體輔助教學過程教學內容與教師活動學生活動設計意圖
創設情境引出課題
問題1:考察兩個試驗:
(1)拋擲一枚質地均勻的硬幣的試驗;
(2)擲一顆質地均勻的骰子的試驗。
問:在這兩個試驗中,可能的結果分別有哪些?
教師引導學生思考問題1:學生思考結果且給出基本事件的特點1
問題1設計意圖:通過擲硬幣與擲骰子兩個接近于生活的試驗的設計。先激發學生的學習興趣,然后引導學生觀察試驗,分析結果,找出共性。
問題2:在擲骰子試驗中,隨機試驗“出現偶數點”可以由哪些事件組成?教師引導學生思考問題2:學生歸納與總結,問題2設計意圖:通過舉例,引出基本事件的特點2。問題3:基本事件有什么特點?
教師加以引導與啟發,利用基本事件的關系發現基本事件的特點問題3:學生口答問題3設計意圖:提高學生概括總結能力問題4:例1、從字母a,b,c,d中任意取出兩個不同字母的實驗中,有那些基本事件?教師引導學生列舉時做到不重復、不遺漏,教師指出畫樹狀圖是列舉法的基本方法。
問題4:學生列舉出基本事件。問題4引導學生用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到研究對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點
通過設疑引出概念
問題1:(1)請問擲一枚均勻硬幣出現正面朝上的概率是多少?
(2)擲一枚均勻的骰子各種點數向上的概率是多少?其中出現偶數點向上的概率是多少?讓學生帶著好奇心去觀察數學模型,老師啟發引導學生推導公式。
問題1學生得到答案且深層次的考慮問題
問題1設計意圖:學生根據已有的知識,已經可以獨立得出概率,通過教師的步步追問,引導學生深層次的考慮問題,看到問題的本質,得出概率公式。讓學生帶著思考問題觀察試驗,使其有目的的去尋找答案,有效的利用課堂時間,達到教學目標。
問題2:上述概率公式的推導過程中基本事件有什么特點?教師引導學生找出共性。具有下列兩個特點的概率模型才能運用上述公式,我們稱為古典概率模型,簡稱古典概型。
(1)試驗中所有可能出現的基本事件只有有限個;(有限性)
(2)每個基本事件出現的可能性相等。(等可能性)問題2學生觀察和初步概括歸納古典概率模型及特征
問題2設計意圖培養運用從特殊到一般,從具體到抽象數學思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過問題的解決引出古典概型的概念。
問題3:(1)向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的,你認為這是古典概型嗎?為什么?
(2)某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環……命中5環和不中環。你認為這是古典概型嗎?為什么?問題3學生互相交流,回答補充得到的答案問題3設計意圖:兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點。突破了如何判斷一個試驗是否是古典概型這一教學難點。
例題分析加深理例題分析加深理
例2、在數學考試中單選題是常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
教師引導學生思考是否滿足古典概型的特征?教師對學生的回答進行歸納與總結
例2學生思考、討論、交流,說出看法
例2設計意圖:通過例題的學習讓學生學會對古典概型的判斷,就是看是否滿足古典概型的兩個基本特征:有限性與等可能性,由此掌握求此類題目的方法,讓學生進一步理解古典概型的概率計算公式。
變式:假設我們現在將單選題改為不定項選擇題,不定項選擇題從A、B、C、D四個選項中選出所有正確答案,假設還是這名考生,他隨機的選擇一個答案,他猜對的概率是多少
教師引導學生列舉15種可能出現的答案,判斷是否滿足古典概型的特征,利用概率公式求值。變式:學生在老師的引導下列舉15種可能出現的答案,并且判斷是否滿足古典概型的特征,利用概率公式求值。變式設計意圖:讓學生感受到數學模型的生活化,能用所學知識解決新問題是數學學習的主旨。當學生用自己的知識解決問題后,會有極大的成就感,提高了學習興趣。
例3、同時擲兩個骰子,計算:(1)一共有多少種不同的結果?
(2)其中向上的點數之和是5的結果有多少種?
(3)向上的點數之和是5的概率是多少?
教師將學生的結果匯總展示,學生給出的答案可能會有多種,然后引導學生分析原因,尋找解答中存在的問題。其中這兩種答案分別對應了解題中的兩種處理方法:把骰子標號進行解題和不標號進行解題,可以提示學生先把這兩種方法下的基本事件全部列出來,然后驗證是否為古典概型。
教師分析兩種方式中每個基本事件的等可能性,引導學生發現在第二種情況下每個基本事件不是等可能的,不是古典概型,因此不能用古典概型計算公式。
例3學生思考、討論,列出兩種方法下的基本事件,發現基本事件的總數不相等,學生發現在第二種情況下每個基本事件不是等可能的,不是古典概型,因此不能用古典概型計算公式
例3設計意圖:引導學生根據古典概型的特征,用列舉法解決概率問題。深化鞏固對古典概型及其概率計算公式的理解,和用列舉法來計算一些隨機事件所含基本事件的個數及事件發生的概率。培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。
數學高考教案篇4
一、教學目標
1.知識與技能
(1)通過實物操作,增強學生的直觀感知。
(2)能根據幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態度與價值觀
(1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養學生的空間想象能力和抽象括能力。
二、教學重點、難點
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的概括。
三、教學用具
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀
四、教學思路
(一)創設情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的`內容。
(二)、研探新知
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3.組織學生分組討論,每小組選出一名同學發表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8.引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。
10.現實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結構特征的物體組合而成。請列舉身邊具有已學過的幾何結構特征的物體,并說出組成這些物體的幾何結構特征?它們由哪些基本幾何體組成的?
(三)質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本P8,習題1.1A組第1題。
4.圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習:課本P7練習1、2(1)(2)
課本P8習題1.1第2、3、4題
五、歸納整理
由學生整理學習了哪些內容
六、布置作業
課本P8練習題1.1B組第1題
課外練習課本P8習題1.1B組第2題
1.2.1空間幾何體的三視圖(1課時)
數學高考教案篇5
一、總體設想:
本節課的設計有兩條暗線:一是圍繞物理中物體做功,引入數量積的概念和幾何意義;二是圍繞數量積的概念通過變形和限定衍生出新知識――垂直的判斷、求夾角和線段長度的公式。教學方案可從三方面加以設計:一是數量積的概念;二是幾何意義和運算律;三是兩個向量的模與夾角的計算。
二、教學目標:
1.了解向量的數量積的抽象根源。
2.了解平面的數量積的概念、向量的夾角
3.數量積與向量投影的關系及數量積的幾何意義
4.理解掌握向量的數量積的性質和運算律,并能進行相關的判斷和計算
三、重、難點:
【重點】1.平面向量數量積的概念和性質
2.平面向量數量積的運算律的探究和應用
【難點】平面向量數量積的應用
課時安排:
2課時
五、教學方案及其設計意圖:
1.平面向量數量積的物理背景
平面向量的數量積,其源自對受力物體在其運動方向上做功等物理問題的抽象。首先說明放置在水平面上的物體受力F的作用在水平方向上的位移是s,此問題中出現了兩個矢量,即數學中所謂的向量,這時物體力F的所做的功為W,這里的(是矢量F和s的夾角,也即是兩個向量夾角的定義基礎,在定義兩個向量的夾角時,要使學生明確“把向量的起點放在同一點上”這一重要條件,并理解向量夾角的范圍。這給我們一個啟示:功是否是兩個向量某種運算的結果呢?以此為基礎引出了兩非零向量a,b的數量積的概念。
平面向量數量積(內積)的定義
已知兩個非零向量a與b,它們的夾角是θ,則數量abcos(叫a與b的數量積,記作a(b,即有a(b=abcos(,(0≤θ≤π).
并規定0與任何向量的數量積為0.
零向量的方向是任意的,它與任意向量的夾角是不確定的,按數量積的定義a(b=abcos(無法得到,因此另外進行了規定。
3.兩個非零向量夾角的概念
已知非零向量a與b,作=a,=b,則∠AOB=θ(0≤θ≤π)叫a與b的夾角.
,是記法,是定義的實質――它是一個實數。按照推理,當時,數量積為正數;當時,數量積為零;當時,數量積為負。
4.“投影”的概念
定義:bcos(叫做向量b在a方向上的投影。
投影也是一個數量,它的符號取決于角(的大小。當(為銳角時投影為正值;當(為鈍角時投影為負值;當(為直角時投影為0;當(=0(時投影為b;當(=180(時投影為(b.因此投影可正、可負,還可為零。
根據數量積的定義,向量b在a方向上的投影也可以寫成
注意向量a在b方向上的投影和向量b在a方向上的投影是不同的,應結合圖形加以區分。
5.向量的數量積的幾何意義:
數量積a(b等于a的長度與b在a方向上投影bcos(的乘積.
向量數量積的幾何意義在證明分配律方向起著關鍵性的作用。其幾何意義實質上是將乘積拆成兩部分:。此概念也以物體做功為基礎給出。是向量b在a的方向上的投影。
6.兩個向量的數量積的性質:
設a、b為兩個非零向量,則
(1)a(b(a(b=0;
(2)當a與b同向時,a(b=ab;當a與b反向時,a(b=(ab.特別的a(a=a2或
(3)a(b≤ab
(4),其中為非零向量a和b的夾角。
例1.(1)已知向量a,b,滿足,a與b的夾角為,則b在a上的投影為______
(2)若,,則a在b方向上投影為_______
例2.已知,,按下列條件求
數學高考教案篇6
《平面向量》
各位評委,老師們:大家好!
很高興參加這次說課活動.這對我來說也是一次難得的學習和鍛煉的機會,感謝各位老師在百忙之中來此予以指導.希望各位評委和老師們對我的說課內容提出寶貴意見.
我說課的內容是<平面向量>的教學,所用的教材是人民教育出版社出版的全日制普通高級中學教科書(試驗修訂本-必修)<數學>第一冊下,教學內容為第96頁至98頁第五章第一節.本校是浙江省一級重點中學,學生基礎相對較好.我在進行教學設計時,也充分考慮到了這一點.
下面我從教材分析,教學目標的確定,教學方法的選擇和教學過程的設計四個方面來匯報我對這節課的教學設想.
一教材分析
(1)地位和作用
向量是近代數學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質轉化為向量的運算體系.向量是溝通代數,幾何與三角函數的一種工具,有著極其豐富的實際背景,在數學和物理學科中具有廣泛的應用.
平面向量的基本概念是在學生了解了物理學中的有關力,位移等矢量的概念的基礎上進一步對向量的深入學習.為學習向量的知識體系奠定了知識和方法基礎.
(2)教學結構的調整
課本在這一部分內容的教學為一課時,首先從小船航行的距離和方向兩個要素出發,抽象出向量的概念,并重點說明了向量與數量的區別.然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念.為使學生更好地掌握這些基本概念,同時深化其認知過程和探究過程.在教學中我將教學的順序做如下的調整:將本節教學中認知過程的教學內容適當集中,以突出這節課的主題;例題,習題部分主要由學生依照概念自行分析,獨立完成.
(3)重點,難點,關鍵
由于本節課是本章內容的第一節課,是學生學習本章的基礎.為了本章后面知識的學習,首先必須掌握向量的概念,要抓住向量的本質:大小與方向.所以向量,相等向量的概念,向量的幾何表示是這節課的重點.本節課是為高一后半學期學生設計的,盡管此時的學生已經有了一定的學習方法和習慣,但根據以往的教學經驗,多數學生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學生的理解能力要求比較高,所以我認為向量概念也是這節課的難點.而解決這一難點的關鍵是多用復雜的幾何圖形中相等的有向線段讓學生進行辨認,加深對向量的理解.
二教學目標的確定
根據本課教材的特點,新大綱對本節課的教學要求,學生身心發展的合理需要,我從三個方面確定了以下教學目標:
(1)基礎知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量.會根據圖形判定向量是否平行,共線,相等.
(2)能力訓練目標:培養學生觀察、歸納、類比、聯想等發現規律的一般方法,培養學生觀察問題,分析問題,解決問題的能力。
(3)情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。
三教學方法的選擇
Ⅰ教學方法
本節課我采用了”啟發探究式的教學方法,根據本課教材的特點和學生的實際情況在教學中突出以下兩點:
(1)由教材的特點確立類比思維為教學的主線.
從教材內容看平面向量無論從形式還是內容都與物理學中的有向線段,矢量的概念類似.因此在教學中運用類比作為思維的主線進行教學.讓學生充分體會數學知識與其他學科之間的聯系以及發生與發展的過程.
(2)由學生的特點確立自主探索式的學習方法
通常學生對于概念課學起來很枯燥,不感興趣,因此要考慮學生的情感需要,找一些學生感興趣的題材來激發學生的學習興趣,另外,學生都有表現自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情.考慮到我校學生的基礎較好,思維較為活躍,對自主探索式的學習方法也有一定的認識,所以在教學中我通過創設問題情境,啟發引導學生運用科學的思維方法進行自主探究.將學生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學的全過程,突出學生的主體作用.
Ⅱ教學手段
本節課中,除使用常規的教學手段外,我還使用了多媒體投影儀和計算機來輔助教學.多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數形結合思想,更易于對概念的理解和難點的突破.
四教學過程的設計
Ⅰ知識引入階段---提出學習課題,明確學習目標
(1)創設情境——引入概念
數學學習應該與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發,讓他們在生活中去發現數學、探究數學、認識并掌握數學。
由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等.這些符合高中學生思維活躍,想象力豐富的特點,有利于激發學生的學習興趣.
(2)觀察歸納——形成概念
由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度.明確知道了有向線段的起點,方向和長度,它的終點就確定.再有目的的進行設計,引導學生概括總結出本課新的知識點:向量的概念及其幾何表示。
(3)討論研究——深化概念
在得到概念后進行歸納,深化,之后向學生提出以下三個問題:
①向量的要素是什么?
②向量之間能否比較大小?
③向量與數量的區別是什么?
同時指出這就是本節課我們要研究和學習的主題.
Ⅱ知識探索階段---探索平面向量的平行向量.相等向量等概念
(1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線向量,并且規定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件.
(2)即時訓練—鞏固新知
為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知識。
[練習1]判斷下列命題是否正確,若不正確,請簡述理由.
數學高考教案篇7
等差數列
【教學目標】
1.知識與技能
(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:
(2)賬務等差數列的通項公式及其推導過程:
(3)會應用等差數列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。
3.情感、態度與價值觀
通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。
【教學重點】
①等差數列的概念;②等差數列的通項公式
【教學難點】
①理解等差數列“等差”的特點及通項公式的含義;②等差數列的通項公式的推導過程.
【學情分析】
我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展.
【設計思路】
1.教法
①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.
②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.
③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.
2.學法
引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.
【教學過程】
一:創設情境,引入新課
1.從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?
2.水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?
3.我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?
教師:以上三個問題中的數蘊涵著三列數.
學生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.
二:觀察歸納,形成定義
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數列有什么共同特點?
思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?
思考3你能將上述的文字語言轉換成數學符號語言嗎?
教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.
學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.
(設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數”,落實對等差數列概念的準確表達.)
三:舉一反三,鞏固定義
1.判定下列數列是否為等差數列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.
(設計意圖:強化學生對等差數列“等差”特征的理解和應用).
2思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?
(設計意圖:強化等差數列的證明定義法)
四:利用定義,導出通項
1.已知等差數列:8,5,2,…,求第200項?
2.已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.
(設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)
五:應用通項,解決問題
1判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?
2在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差數列3,7,11,…的第4項和第10項
教師:給出問題,讓學生自己操練,教師巡視學生答題情況.
學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式
(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)
六:反饋練習:教材13頁練習1
七:歸納總結:
1.一個定義:
等差數列的定義及定義表達式
2.一個公式:
等差數列的通項公式
3.二個應用:
定義和通項公式的應用
教師:讓學生思考整理,找幾個代表發言,最后教師給出補充
(設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設計反思】
本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.