小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

如何下載初中數學教案

時間: 新華 教學設計

教案可以幫助教師從學生實際情況出發,面向大多數學生,調動學生學習的積極性。寫好如何下載初中數學教案不是那么簡單,下面給大家分享如何下載初中數學教案,供大家參考。

如何下載初中數學教案篇1

絕對值

一、教學目標 :

1.知識目標:

①能準確理解絕對值的幾何意義和代數意義。

②能準確熟練地求一個有理數的絕對值。

③使學生知道絕對值是一個非負數,能更深刻地理解相反數的概念。

2.能力目標:

①初步培養學生觀察、分析、歸納和概括的思維能力。

②初步培養學生由抽象到具體再到抽象的思維能力。

3.情感目標:

①通過向學生滲透數形結合思想和分類討論的思想,讓學生領略到數學的奧妙,從而激起他們的好奇心和求知欲望。

②通過課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數學的快樂,從而增強他們的自信心。

二、教學重點和難點

教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。

教學難點 :絕對值定義的得出、意義的理解及求一個負數的絕對值。

三、教學方法

啟發引導式、討論式和談話法

四、教學過程 

(一)復習提問

問題:相反數6與-6在數軸上與原點的距離各是多少?兩個相反數在數軸上的點有什么特征?

(二)新授

1.引入

結合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。

2.數a的絕對值的意義

①幾何意義

一個數a的絕對值就是數軸上表示數a的點到原點的距離。數a的絕對值記作a。

舉例說明數a的絕對值的幾何意義。(按教材P63的倒數第二段進行講解。)

強調:表示0的點與原點的距離是0,所以0=0。

指出:表示“距離”的數是非負數,所以絕對值是一個非負數。

②代數意義

把有理數分成正數、零、負數,根據絕對值的幾何意義可以得出絕對值的代數意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0。

用字母a表示數,則絕對值的代數意義可以表示為: 

指出:絕對值的代數定義可以作為求一個數的絕對值的方法。

3.例題精講

例1.求8,-8,,-的絕對值。

按教材方法講解。

例2.計算:2.5+-3--3。

解:2.5+-3--3=2.5+3-3=6-3=3

例3.已知一個數的絕對值等于2,求這個數。

解:∵2=2,-2=2

∴這個數是2或-2。

五、鞏固練習

練習一:教材P64 1、2,P66習題2.4 A組 1、2。

練習二:

1.絕對值小于4的整數是____。

2.絕對值最小的數是____。

3.已知2x-1+y-2=0,求代數式3x2y的值。

六、歸納小結

本節課從幾何與代數兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數的絕對值都是非負數。絕對值的代數意義可以作為求一個數的絕對值的方法。

七、布置作業 

教材P66 習題2.4 A組 3、4、5。

絕對值

一、教學目標 :

1.知識目標:

①能準確理解絕對值的幾何意義和代數意義。

②能準確熟練地求一個有理數的絕對值。

③使學生知道絕對值是一個非負數,能更深刻地理解相反數的概念。

2.能力目標:

①初步培養學生觀察、分析、歸納和概括的思維能力。

②初步培養學生由抽象到具體再到抽象的思維能力。

3.情感目標:

①通過向學生滲透數形結合思想和分類討論的思想,讓學生領略到數學的奧妙,從而激起他們的好奇心和求知欲望。

②通過課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數學的快樂,從而增強他們的自信心。

二、教學重點和難點

教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。

教學難點 :絕對值定義的得出、意義的理解及求一個負數的絕對值。

三、教學方法

啟發引導式、討論式和談話法

四、教學過程 

(一)復習提問

問題:相反數6與-6在數軸上與原點的距離各是多少?兩個相反數在數軸上的點有什么特征?

(二)新授

1.引入

結合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。

2.數a的絕對值的意義

①幾何意義

一個數a的絕對值就是數軸上表示數a的點到原點的距離。數a的絕對值記作a。

舉例說明數a的絕對值的幾何意義。(按教材P63的倒數第二段進行講解。)

強調:表示0的點與原點的距離是0,所以0=0。

指出:表示“距離”的數是非負數,所以絕對值是一個非負數。

②代數意義

把有理數分成正數、零、負數,根據絕對值的幾何意義可以得出絕對值的代數意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0。

用字母a表示數,則絕對值的代數意義可以表示為: 

指出:絕對值的代數定義可以作為求一個數的絕對值的方法。

3.例題精講

例1.求8,-8,,-的絕對值。

按教材方法講解。

例2.計算:2.5+-3--3。

解:2.5+-3--3=2.5+3-3=6-3=3

例3.已知一個數的絕對值等于2,求這個數。

解:∵2=2,-2=2

∴這個數是2或-2。

五、鞏固練習

練習一:教材P64 1、2,P66習題2.4 A組 1、2。

練習二:

1.絕對值小于4的整數是____。

2.絕對值最小的數是____。

3.已知2x-1+y-2=0,求代數式3x2y的值。

六、歸納小結

本節課從幾何與代數兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數的絕對值都是非負數。絕對值的代數意義可以作為求一個數的絕對值的方法。

七、布置作業 

教材P66 習題2.4 A組 3、4、5。

如何下載初中數學教案篇2

一、 教材結構與內容簡析

在分析新數學課程標準的基礎上確定了本節課在教材中的地位和作用以及確定本節課的教學目標、重點和難點。首先來看一下本節課在教材中的地位和作用。

有理數的加減法在整個知識系統中的地位和作用是很重要的。它是整個初中代數的一個基礎,它直接關系到有理數運算、實數運算、代數式運算、解方程、、研究函數等內容的學習。初中階段要培養學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現實模型,把它轉化成數學問題,從而培養學生的數學意識,增強學生對數學的理解和解決實際問題的能力。 就第一章而言,有理數的加減法是本章的一個重點。在有理數范圍內進行的各種運算:加、減法可以統一成為加法,乘法、除法和乘方可以統一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符號和絕對值),關鍵是這一節的學習。

數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生滲透的德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想 (2)培養學生嚴謹的思維品質。

二、 教學目標

根據新課程標準和上述對教材結構與內容分析,考慮到學生已有的認知結構及心理特征 ,制定如下教學目標:

1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;

2. 通過學習理解加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;

3.通過加法運算練習,培養學生的運算能力。

三、教學建議

(一)重點、難點分析

本小節的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略符號與括號的代數和的計算.

由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,就可靈活運用加法運算律,簡化計算.

(二)教法建議

1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.

2.關于“去括號法則”,只要學生了解,并不要求追究所以然.

3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如:-3-4表示-3、-4兩數的代數和,-4+3表示-4、+3兩數的代數和,3+4表示3和+4的代數和等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。

4.先把正數與負數分別相加,可以使運算簡便。

5.在交換加數的位置時,要連同前面的符號一起交換。如:12-5+7 應變成 12+7-5,而不能變成12-7+5。

備注:教學過程我主要說第一小節---去括號

(三)教學過程:根據教材的結構特點,緊緊抓住新舊知識的內在聯系,運用類比、聯想、轉化的思想,突破難點.

如何下載初中數學教案篇3

一、教材分析

1.教材的地位和作用

(1)函數是初等數學中最基本的概念之一,貫穿于整個初等數學體系之中,也是實際生活中數學建模的重要工具之一,二次函數在初中函數的教學中有重要地位,它不僅是初中代數內容的引申,也是初中數學教學的重點和難點之一,更為高中學習一元二次不等式和圓錐曲線奠定基礎。在歷屆佛山市中考試題中,二次函數都是必不可少的內容。

(2)二次函數的圖像和性質體現了數形結合的數學思想,對學生基本數學思想和素養的形成起推動作用。

(3)二次函數與一元二次方程、不等式等知識的聯系,使學生能更好地將所學知識融會貫通。

2.課標要求:

①通過對實際問題情境的分析確定二次函數的表達式,并體會二次函數的意義。

②會用描點法畫出二次函數的圖象,能從圖象上認識二次函數的性質。

③會根據公式確定圖象的頂點、開口方向和對稱軸(公式不要求記憶和推導)。

④會根據二次函數的性質解決簡單的實際問題。

3.學情分析:

(1)初三學生在新課的學習中已掌握二次函數的定義、圖像及性質等基本知識。

(2)學生的分析、理解能力較學習新課時有明顯提高。

(3)學生學習數學的熱情很高,思維敏捷,具有一定的自主探究和合作學習的能力。

(4)學生能力差異較大,兩極分化明顯。

4.教學目標

◆認知目標

(1)掌握二次函數y=圖像與系數符號之間的關系。通過復習,掌握各類形式的二次函數解析式求解方法和思路,能夠一題多解,發散提高學生的創造思維能力。

◆能力目標

提高學生對知識的整合能力和分析能力。

◆情感目標

制作動畫增加直觀效果,激發學生興趣,感受數學之美。在教學中滲透美的教育,滲透數形結合的思想,讓學生在數學活動中學會感受探索與創造,體驗成功的喜悅。

5.教學重點與難點:

重點:(1)掌握二次函數y=圖像與系數符號之間的關系。

(2)各類形式的二次函數解析式的求解方法和思路。

(3)本節課主要目的,對歷屆中考題中的二次函數題目進行類比分析,達到融會貫通的作用。

難點:(1)已知二次函數的解析式說出函數性質

(2)運用數形結合思想,選用恰當的數學關系式解決幾何問題.

二、教學方法:

1.運用多媒體進行輔助教學,既直觀、生動地反映圖形變換,增強教學的條理性和形象性,又豐富了課堂的內容,有利于突出重點、分散難點,更好地提高課堂效率。

2.將知識點分類,讓學生通過這個框架結構很容易看出不同解析式表示的二次函數的內在聯系,讓學生形成一個清晰、系統、完整的知識網絡。

3.師生互動探究式教學,以課標為依據,滲透新的教育理念,遵循教師為主導、學生為主體的原則,結合初三學生的求知心理和已有的認知水平開展教學.形成學生自動、生生助動、師生互動,教師著眼于引導,學生著眼于探索,側重于學生能力的提高、思維的訓練。同時考慮到學生的個體差異,在教學的各個環節中進行分層施教,讓每一個學生都能獲得知識,能力得到提高。

三、學法指導:

1.學法引導

“授人之魚,不如授人之漁”在教學過程中,不但要傳授學生基本知識,還要培育學生主動思考,親自動手,自我發現等能力,增強學生的綜合素質,從而達到教學終極目標。

2.學法分析:新課標明確提出要培養“可持續發展的學生”,因此教師有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主學習,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

3、設計理念:《課標》要求,對于課程實施和教學過程,教師在教學過程中應與學生積極互動、共同發展,要處理好傳授知識與培養能力的關系,關注個體差異,滿足不同學生的學習需要.”

4、設計思路:不把復習課簡單地看作知識點的復習和習題的訓練,而是通過復習舊知識,拓展學生思維,提高學生學習能力,增強學生分析問題,解決問題的能力。

四、教學過程:

1、教學環節設計:

根據教材的結構特點,緊緊抓住新舊知識的內在聯系,運用類比、聯想、轉化的思想,突破難點.

本節課的教學設計環節:

◆創設情境,引入新知:復習舊知識的目的是對學生新課應具備的“認知前提能力”和“情感前提特征進行檢測判斷”。學生自主完成,不僅體現學生的自主學習意識,調動學生學習積極性,也能為課堂教學掃清障礙。為了更好地理解、掌握二次函數圖像與系數之間的關系,根據不同學生的學習需要,按照分層遞進的教學原則,設計安排了6個由淺入深的題型,讓每一個學生都能為下一步的探究做好準備。

◆自主探究,合作交流:本環節通過開放性題的設置,發散學生思維,學生對二次函數的性質作出全面分析。讓學生在教師的引導下,獨立思考,相互交流,培養學生自主探索,合作探究的能力。通過學生觀察、思考、交流,經歷發現過程,加深對重點知識的理解。

◆運用知識,體驗成功:根據不同層次的學生,同時配有兩個由低到高、層次不同的鞏固性習題,體現漸進性原則,希望學生能將知識轉化為技能。讓每一個學生獲得成功,感受成功的喜悅。

安排三個層次的練習。

(一)從定義出發的簡單題目。

(二)典型例題分析,通過反饋使學生掌握重點內容。

(三)綜合應用能力提高。

既培養學生運用知識的能力,又培養學生的創新意識。引導學生對學習內容進行梳理,將知識系統化,條理化,網絡化,對在獲取新知識中體現出來的`數學思想、方法、策略進行反思,從而加深對知識的理解。并增強學生分析問題,運用知識的能力。

(四)方法與小結

由總結、歸納、反思,加深對知識的理解,并且能熟練運用所學知識解決問題。

2、作業設計:(見課件)

3、板書設計:(見課件)

五、評價分析:

本節課的設計,我以學生活動為主線,通過“觀察、分析、探索、交流”等過程,讓學生在復習中溫故而知新,在應用中獲得發展,從而使知識轉化為能力。本節教學過程主要由創設情境,引入新知――合作交流;探究新知――運用知識,體驗成功;知識深化――應用提高;歸納小結――形成結構等環節構成,環環相扣,緊密聯系,體現了讓學生成為行為主體即“動手實踐、自主探索、合作交流“的《數學新課標》要求。本設計同時還注重發揮多媒體的輔助作用,使學生更好地理解數學知識;貫穿整個課堂教學的活動設計,讓學生在活動、合作、開放、探究、交流中,愉悅地參與數學活動的數學教學。

如何下載初中數學教案篇4

課題:

對數函數

(1)——定義、圖象、性質目標:

1.了解對數函數的定義、圖象及其性質以及它與指數函數間的關系,會求對數函數的定義域。

2.培養培養觀察分析、抽象概括能力、歸納總結能力、邏輯推理能力、化歸轉化能力;

3.培養堅忍不拔的意志,培養發現問題和提出問題的意識、善于獨立思考的習慣,體會事物之間普遍聯系的辯證觀點。

重點:對數函數的定義、圖象、性質

難點:對數函數與指數函數間的關系

過程:

一、復習引入:實例引入:回憶學習指數函數時用的實例我們研究指數函數時,曾經討論過細胞分裂問題,某種細胞分裂時,得到的細胞的個數是分裂次數的函數,這個函數可以用指數函數=表示。現在,我們來研究相反的問題,如果要求這種細胞經過多少次分裂,大約可以得到1萬個,10萬個……細胞,那么,分裂次數就是要得到的細胞個數的函數。根據對數的定義,這個函數可以寫成對數的形式就是如果用表示自變量,表示函數,這個函數就是由反函數概念可知,與指數函數互為反函數這一節,我們來研究指數函數的反函數對數函數

二、新課

1.對數函數的定義:函數叫做對數函數;它是指數函數的反函數。對數函數的定義域為,值域為。

2.對數函數的圖象由于對數函數與指數函數互為反函數,所以的圖象與的圖象關于直線對稱。因此,我們只要畫出和的圖象關于對稱的曲線,就可以得到的圖象,然后根據圖象特征得出對數函數的性質。

活動設計:由學生任意取底數作圖,觀察分析討論,教師引導、整理3.對數函數的性質由對數函數的圖象,觀察得出對數函數的性質。見P87表圖象性質定義域:(0,+∞)值域:R過點(1,0),即當時,時時時時在(0,+∞)上是增函數在(0,+∞)上是減函數活動設計:學生觀察、分析討論,教師引導、整理4.應用例1.(課本第94頁)求下列函數的定義域:(1);(2);(3)分析:此題主要利用對數函數的定義域(0,+∞)求解。解:(1)由>0得,∴函數的定義域是;(2)由得,∴函數的定義域是(3)由9-得-3,∴函數的定義域是注:此題只是對數函數性質的簡單應用,應強調學生注意書寫格式。例2.求下列函數的反函數①②解:①∴②∴

三、小結:對數函數定義、圖象、性質四、作業:課本第95頁練習1,2習題2.81,2

如何下載初中數學教案篇5

教學目的 知識技能使學生會用列一元二次方程的方法解決有關面積、體積方面和經濟方面的問題.

數學思考 提高將實際問題轉化為數學問題的能力以及用數學的意識,滲透轉化的思想、方程的思想及數形結合的思想.

解決問題通過列一元二次方程的方法解決日常生活及生產實際中遇到的有關面積、體積方面和經濟方面的問題.

情感態度 通過探究性學習,抓住問題的關鍵,揭示它的規律性,展示解題的簡潔性的數學美.

教學難點 審題,從文字語言中挖掘有價值的信息.

知識重點 會用列一元二次方程的方法解有關面積、體積方面和經濟方面的問題.

教學過程設計意圖

教學過程

問題一:列方程解應用題的一般步驟?

師生共同回憶

列方程解應用題的步驟:

(1)審題;(2)設未知數;

(3)列方程;(4)求解;

(5)檢驗;(6)答.

問題二:矩形的周長和面積?長方體的體積?

問題三:如圖,某小區內有一塊長、寬比為1:2的矩形空地,計劃在該空地上修筑兩條寬均為2m的互相垂直的小路,余下的四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312m2,請求出原來大矩形空地的長和寬.

教師活動:引導學生讀題,找到題目中的關鍵語句.

學生活動:在關鍵語句中找到反映相等關系的語句,探究解決辦法.

教師活動:用多媒體演示分析,解題方法.

做一做

如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的小正方形的邊長.

課堂練習:將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的,求這個正方形的邊長.

問題四:某商場銷售一種服裝,平均每天可售出20件,每件贏利40元.經市場調查發現:如果每件服裝降價1元,平均每天能多售出2件.在國慶節期間,商場決定采取降價促銷的措施,以達到減少庫存、擴大銷售量的目的.如果銷售這種服裝每天贏利1200元,那么每件服裝應降價多少元?

學生活動:在眾多的文字中,找到關鍵語句,分析相等關系.

教師活動:用多媒體幫助學生分析試題.提示學生檢驗解的合理性.

課堂練習:1.經銷商以每雙21元的價格從廠家購進一批運動鞋,如果每雙鞋售價為a元,那么可以賣出這種運動鞋(350-10a)雙.物價局限定每雙鞋的售價不得超過進價的120%.如果商店要賺400元,每雙鞋的售價應定為多少元?需要賣出多少雙鞋?

2.某商店從廠家以每件18元的價格購進一批商品,該商店可以自行定價.據市場調查,該商品的售價與銷售量的關系是:若每件售價a元,則可賣出(320-10a)件,但物價部門限定每件商品加價不能超過進貨價25%的.如果商店計劃要獲利400元,則每件商品的售價應定為多少元?需要賣出這種商品多少件?(每件商品的利潤=售價進貨價)

復習列方程解應用題的一般步驟.

本題為后面解決有關面積、體積方面問題做鋪墊.

提高學生的審題能力.使學生會解決有關面積的問題.

解決體積問題的問題

培養學生用數學的意識以及滲透轉化和方程的思想方法.

強調對方程的解進行雙重檢驗.

小結與作業

課堂

小結利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養.

本課

作業課本第43頁習題2

課后隨筆(課堂設計理念,實際教學效果及改進設想)

如何下載初中數學教案篇6

4.1二元一次方程

【教學目標】

知識與技能目標

1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會辨別一個方程是不是

二元一次方程;

2、通過探索交流,會辨別一個解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;

3、會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。過程與方法目標經歷觀察、比較、猜想、驗證等數學學習活動,培養分析問題的能力和數學說理能力;

情感與態度目標

1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進一步培養運用類比轉化的思想解決問題的能力;

2、通過對實際問題的分析,培養關注生活,進一步體會方程是刻畫現實世界的有效數學模型,培養良好的數學應用意識。

【重點、難點】

重點:二元一次方程的概念及二元一次方程的解的概念。

難點1、了解二元一次方程的解的不唯一性和相關性。即了解二元一次方程的解有無數個,

但不是任意的兩個數是它的解。

2、把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。

【教學方法與教學手段】

1、通過創設問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一

次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。

2、通過觀察、思考、交流等活動,激發學習情緒,營造學習氣氛,給學生一定的時間和

空間,自主探討,了解二元一次方程的解的不唯一性和相關性。

3、通過學練結合,以游戲的形式讓學生及時鞏固所學知識。

【教學過程】

一、創設情境導入新課

1、一個數的3倍比這個數大6,這個數是多少?

2、寫有數字5的黃卡和寫有數字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數字之和為22?

思考:這個問題中,有幾個未知數?能列一元一次方程求解嗎?

如果設黃卡取x張,藍卡取y張,你能列出方程嗎?

3、在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米。如果設轎車的速度是a千米/時,卡車的速度是b千米/時,你能列出怎樣的方程?

二、師生互動探索新知

1、推陳出新發現新知

引導學生觀察所列的方程:5x?2y?22,2a?3b?20,這兩個方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們取個名字嗎?

(板書:二元一次方程)

根據它們的共同特征,你認為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數,且含有未知數的項的次數都是一次的方程叫做二元一次方程。)

2、小試牛刀鞏固新知

判斷下列各式是不是二元一次方程

(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

3、師生互動再探新知

(1)什么是方程的解?(使方程兩邊的值相等的`未知數的值,叫做方程的解。)

(2)你能給二元一次方程的解下一個定義嗎?(使二元一次方程兩邊的值相等的一對未

知數的值,叫做二元一次方程的一個解。)

?若未知數設為x,y,記做x?,若未知數設為a,b,記做

?y?

4、再試牛刀檢驗新知

(1)檢驗下列各組數是不是方程2a?3b?20的解:(學生感悟二元一次方程解的不唯一性)

a?4a?5a?0a?100

b?3b??1020b??b?6033

(2)你能寫出方程x-y=1的一個解嗎?(再一次讓學生感悟二元一次方程的解的不唯一性)

5、自我挑戰三探新知

有3張寫有相同數字的藍卡和2張寫有相同數字的黃卡,這五張卡片上的數字之和為10。設藍卡上的數字為x,黃卡上的數字為y,根據題意列方程。3x?2y?10

請找出這個方程的一個解,并寫出你得到這個解的過程。

學生在解二元一次方程的過程中體驗和了解二元一次方程解的不唯一性。

6、動動筆頭鞏固新知

獨立完成課本第81頁課內練習2

三、你說我說清點收獲

比較一元一次方程和二元一次方程的相同點和不同點

相同點:方程兩邊都是整式

含有未知數的項的次數都是一次

如何求一個二元一次方程的解

四、知識鞏固

1、必答題

(1)填空題:若mxy?9x?3yn?1?7是關于x,y的二元一次方程,則m?n?x?2y?5變形正確的有2

10?__?10①x?5?4y②x?10?4y③y?④y?44

(3x?7是方程2x?y?15的解。()(2)多選題:方程

y?1

x?7

(4)判斷題:方程2x?y?15的解是。()y?1

2、搶答題

是方程2x?3y?5的一個解,求a的值。(1)已知x??2

y?a

(2)寫出一個解為x?3的二元一次方程。

y?1

3、個人魅力題

寫有數字5的黃卡和寫有數字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數字之和為22?設黃卡取x張,藍卡取y張,根據題意列方程:5x?2y?22你能完成這道題目嗎?

五、布置作業

如何下載初中數學教案篇7

一、教材分析

冪函數是學生在系統學習了指數函數、對數函數之后研究的又一類基本初等函數。是對函數概念及性質的應用,能進一步培養利用函數的性質(定義域、值域、圖像、奇偶性、單調性)研究一個函數的意識。因而本節課更是一個對學生研究函數的方法和能力的綜合提升。從概念到圖象(),利用這五個函數的圖象探究其定義域、值域、奇偶性、單調性、公共點,概括、歸納冪函數的性質,培養學生從特殊到一般再到特殊的一般認知規律。從教材的整體安排看,學習了解冪函數是為了讓學生進一步獲得比較系統的函數知識和研究函數的方法,以便能將該方法遷移到對其他函數的研究。

二、教學目標分析

依據課程標準,結合學生的認知發展水平和心理特征,確定本節課的教學目標如下:

[知識與技能]使學生了解冪函數的定義,會畫常見冪函數的圖象,掌握冪函數的圖象和性質,初步學會運用冪函數解決問題,進一步體會數形結合的思想。

[過程與方法]引入、剖析、定義冪函數的過程,啟動觀察、分析、抽象概括等思維活動,培養學生的思維能力,體會數學概念的學習方法;通過運用多媒體的教學手段,引領學生主動探索冪函數性質,體會學習數學規律的方法,體驗成功的樂趣;對冪函數的性質歸納、總結時培養學生抽象概括和識圖能力;運用性質解決問題時,進一步強化數形結合思想。

[情感、態度與價值觀]通過生活實例引出冪函數概念,使學生體會生活中處處有數學,激發學生的學習興趣。通過本節課的學習,使學生進一步加深研究函數的規律和方法;提高學生的學習能力;養成積極主動,勇于探索,不斷創新的學習習慣和品質;樹立學科學,愛科學,用科學的精神。

三、重、難點分析

[教學重點]

(1)冪函數的定義與性質;

(2)指數α的變化對冪函數y=xα(α∈R)的影響。從知識體系看,前面有指數函數與對數函數的學習,后面有其他函數的研究,本節課的學習具有承上啟下的作用;就知識特點而言,蘊涵豐富的數學思想方法;就能力培養來說,通過學生對冪函數性質的歸納,可培養學生類比、歸納概括能力,運用數學語言交流表達的能力。

[教學難點]

(1)指數α的變化對冪函數y=xα(α∈R)性態的影響。

(2)數形結合解決大小比較以及求參數的問題。從學生認知發展看,他們具備一定的學習新函數的能力,可以通過學習指數函數與對數函數的方法來類比,但畢竟冪函數在三種初等函數中是最難的,因為它分類的情況很多,且性質多而復雜,我采用讓學生自己利用計算機作出函數的圖像,從中歸納性質的方法來突破難點。

四、學情與教法分析

1.學情分析

從學生思維特點來和認知結構看,前面學生已經學習指數函數與對數函數,對新函數的學習已經有了一定的經驗。一方面可以把本節課與前面的指數函數與對數函數進行類比學習,但另一方面本節課分類情況多,性質歸納困難,尤其是三個函數放在一起可能產生混淆。對進入高中半個學期的學生來說,雖然具備一定的分析和解決問題的能力,邏輯思維也初步形成,但缺乏冷靜、深刻,思維具有片面性、不嚴謹的特點,對問題解決的一般性思維過程認識比較模糊。

2.教法分析

學生思維活躍,求知欲強,但在思維習慣上還有待教師引導從學生原有的知識和能力出發,在教師的帶領下創設疑問,通過合作交流,共同探索,逐步解決問題。采用引導發現式的教學方法,充分利用多媒體輔助教學。通過教師點撥,啟發學生主動觀察、主動思考、動手操作、自主探究來達到對知識的發現和接受。

3.教學構想

新課標的要求是通過實例,了解y=x,的圖像,了解它們的變化情況。而原數學教學大綱要求掌握冪函數的概念及其圖像和性質,在考查掌握函數性質和運用性質解決問題時,所涉及的冪函數f(x)=xα中α限于在集合{-2,-1,-,1,2,3}中取值。新課標無論從內容的容量和難度上都要遠低于舊課標。而蘇教版的教材嚴格按照新課標要求處理此部分內容,內容體系均未超出課標要求。所以我們應以新課標為準繩,控制難度與要求。由于本節課的難點在于指數α的變化對冪函數y=xα(α∈R)性態的影響,本身冪函數比較抽象,所以我采用在多媒體教室讓學生用Excel來模擬得到圖象,再從圖象上觀察、歸納函數的性質。從心理學上講,自己經歷知識的發生發展過程,印象更深刻,學生容易接受與理解。

如何下載初中數學教案篇8

12.6一元二次方程的應用(三)

一、素質教育目標

(一)知識教學點:使學生會用列一元二次方程的方法解決有關增長率問題.

(二)能力訓練點:進一步培養學生化實際問題為數學問題的能力和分析問題解決問題的能力,培養學生用數學的意識.

二、教學重點、難點

1.教學重點:學會用列方程的方法解決有關增長率問題.

2.教學難點 :有關增長率之間的數量關系.下列詞語的異同;增長,增長了,增長到;擴大,擴大到,擴大了.

三、教學步驟 

(一)明確目標.

(二)整體感知

(三)重點、難點的學習和目標完成過程

1.復習提問

(1)原產量+增產量=實際產量.

(2)單位時間增產量=原產量×增長率.

(3)實際產量=原產量×(1+增長率).

2.例1 某鋼鐵廠去年一月份某種鋼的產量為5000噸,三月份上升到7200噸,這兩個月平均每月增長的百分率是多少?

分析:設平均每月的增長率為x.

則2月份的產量是5000+5000x=5000(1+x)(噸).

3月份的產量是[5000(1+x)+5000(1+x)x]

=5000(1+x)2(噸).

解:設平均每月的增長率為x,據題意得:

5000(1+x)2=7200

(1+x)2=1.44

1+x=±1.2.

x1=0.2,x2=-2.2(不合題意,舍去).

取x=0.2=20%.

教師引導,點撥、板書,學生回答.

注意以下幾個問題:

(1)為計算簡便、直接求得,可以直接設增長的百分率為x.

(2)認真審題,弄清基數,增長了,增長到等詞語的關系.

(3)用直接開平方法做簡單,不要將括號打開.

練習1.教材P.42中5.

學生分析題意,板書,筆答,評價.

練習2.若設每年平均增長的百分數為x,分別列出下面幾個問題的方程.

(1)某工廠用二年時間把總產值增加到原來的b倍,求每年平均增長的百分率.

(1+x)2=b(把原來的總產值看作是1.)

(2)某工廠用兩年時間把總產值由a萬元增加到b萬元,求每年平均增長的百分數.

(a(1+x)2=b)

(3)某工廠用兩年時間把總產值增加了原來的b倍,求每年增長的百分數.

((1+x)2=b+1把原來的總產值看作是1.)

以上學生回答,教師點撥.引導學生總結下面的規律:

設某產量原來的產值是a,平均每次增長的百分率為x,則增長一次后的產值為a(1+x),增長兩次后的產值為a(1+x)2,…………增長n次后的產值為S=a(1+x)n.

規律的得出,使學生對此類問題能居高臨下,同時培養學生的探索精神和創造能力.

例2 某產品原來每件600元,由于連續兩次降價,現價為384元,如果兩個降價的百分數相同,求每次降價百分之幾?

分析:設每次降價為x.

第一次降價后,每件為600-600x=600(1-x)(元).

第二次降價后,每件為600(1-x)-600(1-x)•x

=600(1-x)2(元).

解:設每次降價為x,據題意得

600(1-x)2=384.

答:平均每次降價為20%.

教師引導學生分析完畢,學生板書,筆答,評價,對比,總結.

引導學生對比“增長”、“下降”的區別.如果設平均每次增長或下降為x,則產值a經過兩次增長或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).

(四)總結、擴展

1.善于將實際問題轉化為數學問題,嚴格審題,弄清各數據相互關系,正確布列方程.培養學生用數學的意識以及滲透轉化和方程的思想方法.

2.在解方程時,注意巧算;注意方程兩根的取舍問題.

3.我們只學習一元一次方程,一元二次方程的解法,所以只求到兩年的增長率.3年、4年……,n年,應該說按照規律我們可以列出方程,隨著知識的增加,我們也將會解這些方程.

四、布置作業 

教材P.42中A8

五、板書設計 

12.6 一元二次方程應用(三)

1.數量關系: 例1…… 例2……

(1)原產量+增產量=實際產量 分析:…… 分析……

(2)單位時間增產量=原產量×增長率 解…… 解……

(3)實際產量=原產量(1+增長率)  

2.最后產值、基數、平均增長率、時間  

的基本關系:  

M=m(1+x)n n為時間  

M為最后產量,m為基數,x為平均增長率  

12.6一元二次方程的應用(三)

一、素質教育目標

(一)知識教學點:使學生會用列一元二次方程的方法解決有關增長率問題.

(二)能力訓練點:進一步培養學生化實際問題為數學問題的能力和分析問題解決問題的能力,培養學生用數學的意識.

二、教學重點、難點

1.教學重點:學會用列方程的方法解決有關增長率問題.

2.教學難點 :有關增長率之間的數量關系.下列詞語的異同;增長,增長了,增長到;擴大,擴大到,擴大了.

三、教學步驟 

(一)明確目標.

(二)整體感知

(三)重點、難點的學習和目標完成過程

1.復習提問

(1)原產量+增產量=實際產量.

(2)單位時間增產量=原產量×增長率.

(3)實際產量=原產量×(1+增長率).

2.例1 某鋼鐵廠去年一月份某種鋼的產量為5000噸,三月份上升到7200噸,這兩個月平均每月增長的百分率是多少?

分析:設平均每月的增長率為x.

則2月份的產量是5000+5000x=5000(1+x)(噸).

3月份的產量是[5000(1+x)+5000(1+x)x]

=5000(1+x)2(噸).

解:設平均每月的增長率為x,據題意得:

5000(1+x)2=7200

(1+x)2=1.44

1+x=±1.2.

x1=0.2,x2=-2.2(不合題意,舍去).

取x=0.2=20%.

教師引導,點撥、板書,學生回答.

注意以下幾個問題:

(1)為計算簡便、直接求得,可以直接設增長的百分率為x.

(2)認真審題,弄清基數,增長了,增長到等詞語的關系.

(3)用直接開平方法做簡單,不要將括號打開.

練習1.教材P.42中5.

學生分析題意,板書,筆答,評價.

練習2.若設每年平均增長的百分數為x,分別列出下面幾個問題的方程.

(1)某工廠用二年時間把總產值增加到原來的b倍,求每年平均增長的百分率.

(1+x)2=b(把原來的總產值看作是1.)

(2)某工廠用兩年時間把總產值由a萬元增加到b萬元,求每年平均增長的百分數.

(a(1+x)2=b)

(3)某工廠用兩年時間把總產值增加了原來的b倍,求每年增長的百分數.

((1+x)2=b+1把原來的總產值看作是1.)

以上學生回答,教師點撥.引導學生總結下面的規律:

設某產量原來的產值是a,平均每次增長的百分率為x,則增長一次后的產值為a(1+x),增長兩次后的產值為a(1+x)2,…………增長n次后的產值為S=a(1+x)n.

規律的得出,使學生對此類問題能居高臨下,同時培養學生的探索精神和創造能力.

例2 某產品原來每件600元,由于連續兩次降價,現價為384元,如果兩個降價的百分數相同,求每次降價百分之幾?

分析:設每次降價為x.

第一次降價后,每件為600-600x=600(1-x)(元).

第二次降價后,每件為600(1-x)-600(1-x)•x

=600(1-x)2(元).

解:設每次降價為x,據題意得

600(1-x)2=384.

答:平均每次降價為20%.

教師引導學生分析完畢,學生板書,筆答,評價,對比,總結.

引導學生對比“增長”、“下降”的區別.如果設平均每次增長或下降為x,則產值a經過兩次增長或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).

(四)總結、擴展

1.善于將實際問題轉化為數學問題,嚴格審題,弄清各數據相互關系,正確布列方程.培養學生用數學的意識以及滲透轉化和方程的思想方法.

2.在解方程時,注意巧算;注意方程兩根的取舍問題.

3.我們只學習一元一次方程,一元二次方程的解法,所以只求到兩年的增長率.3年、4年……,n年,應該說按照規律我們可以列出方程,隨著知識的增加,我們也將會解這些方程.

四、布置作業 

教材P.42中A8

五、板書設計 

12.6 一元二次方程應用(三)

1.數量關系: 例1…… 例2……

(1)原產量+增產量=實際產量 分析:…… 分析……

(2)單位時間增產量=原產量×增長率 解…… 解……

(3)實際產量=原產量(1+增長率)  

2.最后產值、基數、平均增長率、時間  

的基本關系:  

M=m(1+x)n n為時間  

M為最后產量,m為基數,x為平均增長率  

如何下載初中數學教案篇9

教學目標

1、了解數軸的概念和數軸的畫法,掌握數軸的三要素;

2、會用數軸上的點表示有理數,會利用數軸比較有理數的大小;

3、使學生初步了解數形結合的思想方法,培養學生相互聯系的觀點。

教學建議

一、重點、難點分析

本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小。難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。

二、知識結構

有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的方法,本課知識要點如下表:

定義三要素應用

數形結合

規定了原點、正方向、單位長度的直線叫數軸原點

正方向

單位長度幫助理解有理數的概念,每個有理數都可用數軸上的點表示,但數軸上的點并非都是有理數比較有理數大小,數軸上右邊的數總比左邊的數要大

在理解并掌握數軸概念的基礎之上,要會畫出數軸,能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數,要知道所有的有理數都可以用數軸上的點表示,會利用數軸比較有理數的大小。

三、教法建議

小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。數軸是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是數軸的根本依據。數軸與它所在的位置無關,但為了教學上需要,一般水平放置的數軸,規定從原點向右為正方向。要注意原點位置選擇的任意性。

關于有理數與數軸上的點的對應關系,應該明確的是有理數可以用數軸上的點表示,但數軸上的點與有理數并不存在一一對應的關系。根據幾個有理數在數軸上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。

四、數軸的相關知識點

1、數軸的概念

(1)規定了原點、正方向和單位長度的直線叫做數軸。

這里包含兩個內容:一是數軸的三要素:原點、正方向、單位長度缺一不可。二是這三個要素都是規定的。

(2)數軸能形象地表示數,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。

以數軸是理解有理數概念與運算的重要工具。有了數軸,數和形得到初步結合,數與表示數的圖形(如數軸)相結合的思想是學習數學的思想。另外,數軸能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小。因此,應重視對數軸的學習。

2、數軸的畫法

(1)畫直線(一般畫成水平的)、定原點,標出原點“O”。

(2)取原點向右方向為正方向,并標出箭頭。

(3)選適當的長度作為單位長度,并標出…,—3,—2,—1,1,2,3…各點。具體如下圖。

(4)標注數字時,負數的次序不能寫錯,如下圖。

3。用數軸比較有理數的大小

(1)在數軸上表示的兩數,右邊的數總比左邊的數大。

(2)由正、負數在數軸上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。

(3)比較大小時,用不等號順次連接三個數要防止出現“”的寫法,正確應寫成“”。

五、數軸定義的理解

如何下載初中數學教案篇10

教學目標

1、使學生能說出有理數大小的比較法則

2、能熟練運用法則結合數軸比較有理數的大小,特別是應用絕對值概念比較兩個負數的大小,能利用數軸對多個有理數進行有序排列。

3、能正確運用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關系。

三、教學重點與難點

重點:運用法則借助數軸比較兩個有理數的大小。

難點:利用絕對值概念比較兩個負分數的大小。

四、教學準備

多媒體課件

五、教學設計

(一)交流對話,探究新知

1、說一說

(多媒體顯示)某一天我們5個城市的最低氣溫    從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發學生的求知欲望,可能有些學生會說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學生會說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會說的,老師適當點拔,從而學生在合作交流中不知不覺地完成了以下填空。

比較這一天下列兩個城市間最低氣溫的高低(填"高于"或"低于")

廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。

2、畫一畫:(1)把上述5個城市最低氣溫的數表示在數軸上,(2)觀察這5個數在數軸上的位置,從中你發現了什么?

(3)溫度的高低與相應的數在數軸上的位置有什么?

(通過學生自己動手操作,觀察、思考,發現原點左邊的數都是負數,原點右邊的數都是正數;同時也發現5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數軸上原點右邊的兩個數,右邊的數總比左邊的數大。教師趁機追問,原點左邊的數也有這樣的規律嗎?從而激發學生探索知識的欲望,進一步驗證了原點左邊的數也有這樣的規律。從而使學生親身體驗探索的樂趣,在探究中不知不覺獲得了知識。)由小組討論后,教師歸納得出結論:

在數軸上表示的兩個數,右邊的數總比左邊的數大。

正數都大于零,負數都小于零,正數大于負數。

(二)應用新知,體驗成功

1、練一練(師生共同完成例1后,學生完成隨堂練習1)

例1:在數軸上表示數5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)

分析:本題意有幾層含義?應分幾步?

要點總結:小組討論歸納,本題解題時的一般步驟:①畫數軸②描點;③有序排列;④不等號連接。

隨堂練習: P19 T1

2、做一做

(1)在數軸上表示下列各對數,并比較它們的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出圖中各對數的絕對值,并比較它們的大小。

(3)由①、②從中你發現了什么?

(學生小組討論后,代表站起來發言,口述自己組的發現,說明自己組發現的過程,逐步培養學生觀察、歸納、用數學語言表達數學規律的能力。)

要點總結:兩個正數比較大小,絕對值大的數大;兩個負數比較大小,絕對值大的數反而小。

在學生討論的基礎上,由學生總結得出有理數大小的比較法則。

(1)正數都大于零,負數都小于零,正數大于負數。

(2)兩個正數比較大小,絕對值大的數大。

(3)兩個負數比較大小,絕對值大的數反而小。

3、師生共同完成例2后,學生完成隨堂練習2、3、4。

例2比較下列每對數的大小,并說明理由:(師生共同完成)

(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|

分析:第(4)(5)題較難,第(4)題應先通分,第(5)題應先化簡,再比較。同時在講解時,要注意格式。

注:絕對值比較時,分母相同,分子大的數大;分子相同,則分母大的數反而小;分子分母都不相同時,則應先通分再比較,或把分子化相同再比較。

兩個負數比較大小時的一般步驟:①求絕對值;②比較絕對值的大小;③比較負數的大小。

思考:還有別的方法嗎?(分組討論,積極思考)

4、想一想:我們有幾種方法來判斷有理數的大小?你認為它們各有什么特點?

由學生討論后,得出比較有理數的大小共有兩種方法,一種是法則,另一種是利用數軸,當兩個數比較時一般選用第一種,當多個有理數比較大小時,一般選用第二種較好。

練一練:P19 T2、3、4

5、考考你:請你回答下列問題:

(1)有沒有的有理數,有沒有最小的有理數,為什么?

(2)有沒有絕對值最小的有理數?若有,請把它寫出來?

(3)在于-1.5且小于4.2的整數有_____個,它們分別是____。

(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個數的大小嗎?(本題屬提高題,不要求全體學生掌握)

(新穎的問題會激發學生的好奇心,通過合作交流,自主探究等活動,培養學生思維的習慣和數學語言的表達能力)

6、議一議,談談本節課你有哪些收獲

(由師生共同完成本節課的小結)本節課主要學習了有理數大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數軸,運用這種方法時,首先必須把要比較的數在數軸上表示出來,然后按照它們在數軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個有理數大小時非常簡便。

六、布置作業:P19 A組、B組

基礎好的A、B兩組都做

基礎較差的同學選做A組。

如何下載初中數學教案篇11

一、課題引入

為了讓學生更好地理解正數與負數的概念,作為教師有必要了解數系的發展.從數系的發展歷程來看,微積分的基礎是實數理論,實數的基礎是有理數,而有理數的基礎則是自然數.自然數為數學結構提供了堅實的基礎.

對于“數的發展”(也即“數的擴充”),有著兩種不同的認知體系.一是數的自然擴充過程,如圖1所示,即數系發展的自然的、歷史的體系,它反映了人類對數的認識的歷史發展進程;另一是數的邏輯擴充過程,如圖2所示,即數系發展所經歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數學家構造的一種邏輯體系,其中綜合反映了現代數學中許多思想方法.

二、課題研究

在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數量.這些數量不僅與5、5000等數量有關,而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.

為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數、正分數、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數—負數.

我們把所學過的大于零的數,都稱為正數;而且還可以在正數的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數,讀作“正5”.

在正數的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構成的數統稱為負數.“-5”讀作“負5”,“-5000”讀作“負5000”.

于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數量就有了不同的表達方式.

利用正數與負數可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數記作“+2”,把乙隊的凈勝球數記作“-2”.

借助實際例子能夠讓學生較好地理解為什么要引入負數,認識到負數是為了有效表達與實際生活相關的一些數量而引入的一種新數,而不是人為地“硬造”出來的一種“新數”.

三、鞏固練習

例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調,又該怎樣記錄這筆支出呢?

思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數或負數來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.

特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數量,都用正數來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數量則用負數來表示.

再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.

例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元

日期周二周三周四周五

開盤+0.16+0.25+0.78+2.12

收盤-0.23-1.32-0.67-0.65

當日收盤價

試在表中填寫周二到周五該股票的收盤價.

思路分析:以周二為例,表中數據“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數據“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.

因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:

周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球隊以主客場的形式進行雙循環比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數分別是主客隊的進球數,例如3∶2表示主隊進3球客隊進2球.

如何下載初中數學教案篇12

教學目標

1、知識與技能

能應用所學的函數知識解決現實生活中的問題,會建構函數“模型”。

2、過程與方法

經歷探索一次函數的應用問題,發展抽象思維。

3、情感、態度與價值觀

培養變量與對應的思想,形成良好的函數觀點,體會一次函數的應用價值。

重、難點與關鍵

1、重點:一次函數的應用。

2、難點:一次函數的應用。

3、關鍵:從數形結合分析思路入手,提升應用思維。

教學方法

采用“講練結合”的教學方法,讓學生逐步地熟悉一次函數的.應用。

教學過程

一、范例點擊,應用所學

【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數關系式,并畫出函數圖象。

y=

【例6】A城有肥料200噸,B城有肥料300噸,現要把這些肥料全部運往C、D兩鄉。從A城往C、D兩鄉運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉運肥料的費用分別為每噸15元和24元,現C鄉需要肥料240噸,D鄉需要肥料260噸,怎樣調運總運費最少?

解:設總運費為y元,A城往運C鄉的肥料量為x噸,則運往D鄉的肥料量為(200—x)噸。B城運往C、D鄉的肥料量分別為(240—x)噸與(60+x)噸。y與x的關系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉0噸,運往D鄉200噸;從B城運往C鄉240噸,運往D鄉60噸,此時總運費最少,總運費最小值為10040元。

拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應怎樣調運?

二、隨堂練習,鞏固深化

課本P119練習。

三、課堂總結,發展潛能

由學生自我評價本節課的表現。

四、布置作業,專題突破

課本P120習題14.2第9,10,11題。

板書設計

1、一次函數的應用例:

如何下載初中數學教案篇13

一、素質教育目標

(一)知識教學點

1、能根據一個數的絕對值表示"距離",初步理解絕對值的概念。

2、給出一個數,能求它的絕對值。

(二)能力訓練點

在把絕對值的代數定義轉化成數學式子的過程中,培養學生運用數學轉化思想指導思維活動的能力。

(三)德育滲透點

1、通過解釋絕對值的幾何意義,滲透數形結合的思想。

2、從上節課學的相反數到本節的絕對值,使學生感知數學知識具有普遍的聯系性。

(四)美育滲透點

通過數形結合理解絕對值的意義和相反數與絕對值的聯系,使學生進一步領略數學的和諧美。

二、學法引導

1、教學方法:采用引導發現法,輔之以講授,學生討論,力求體現"教為主導,學為主體"的教學要求,注意創設問題情境,使學生自得知識,自覓規律。

2、學生學法:研究+6和-6的不同點和相同點→絕對值概念→鞏固練習→歸納小結(絕對值代數意義)

三、重點、難點、疑點及解決辦法

1、重點:給出一個數會求出它的絕對值。

2、難點:絕對值的幾何意義,代數定義的導出。

3、疑點:負數的絕對值是它的相反數。

四、課時安排

2課時

五、教具學具準備

投影儀(電腦)、三角板、自制膠片。

六、師生互動活動設計

教師提出+6和-6有何相同點和不同點,學生研究討論得出絕對值概念;教師出示練習題,學生討論解答歸納出絕對值代數意義。

七、教學步驟

(一)創設情境,復習導入

師:以上我們學習了數軸、相反數。在練習本上畫一個數軸,并標出表示-6,0及它們的相反數的點。

學生活動:一個學生板演,其他學生在練習本上畫。

【教法說明】絕對值的學習是以相反數為基礎的,在學生動手畫數軸的同時,把相反數的知識進行復習,同時也為絕對值概念的引入奠定了基礎,這里老師不包辦代替,讓學生自己練習。

(二)探索新知,導入新課

師:同學們做得非常好!-6與6是相反數,它們只有符號不同,它們什么相同呢?

學生活動:思考討論,很難得出答案。

師:在數軸上標出到原點距離是6個單位長度的點。

學生活動:一個學生板演,其他學生在練習本上做。

師:顯然A點(表示6的點)到原點的距離是6,B點(表示-6的點)到原點距離是6個單位長嗎?

學生活動:產生疑問,討論。

師:+6與-6雖然符號不同,但表示這兩個數的點到原點的距離都是6,是相同的。我們把這個距離叫+6與-6的絕對值。

2、4絕對值(1)

【教法說明】針對"互為相反數的兩數只有符號不同"提出問題:"它們什么相同呢?"在學生頭腦中產生疑問,激發了學生探索知識的欲望,但這時學生很難回答出此問題,這時教師注意引導再提出要求:"找到原點距離是6個單位長度的點"這時學生就有了一個攀登的臺階,自然而然地想到表示+6,-6的點到原點的距離相同,從而引出了絕對值的概念,這樣一環緊扣一環,時而緊張時而輕松,不知不覺學生已獲得了知識。

師:-6的絕對值是表示-6的點到原點的距離,-6的絕對值是6;6的絕對值是表示6的點到原點的距離,6的絕對值是6、

提出問題:

(1)-3的絕對值表示什么?

(2)3的絕對值呢?

(3)a的絕對值呢?

學生活動:(1)(2)題根據教師的引導學生口答,(3)題討論后口答。

一個數a的絕對值是數軸上表示數a的點到原點的距離。

數a的絕對值是a

【教法說明】由-6,6,-3,這些特殊的數的絕對值引出數的絕對值,逐層鋪墊,由學生得出絕對值的幾何意義,既理解了一個數的絕對值的含義也訓練了學生口頭表達能力,突破了難點。

(三)嘗試反饋,鞏固練習

師:字母可以表示任意數,若把a換成,9,0,-1,-0、4觀察數軸,它們的絕對值各是多少?

學生活動:口答:,,,,

師:你在自己畫的數軸上標出五個數,讓同桌指出它們的絕對值。

學生活動:按教師要求自己又當"小老師"又當"學生"、教師找一組學生回答,并及時糾正出現的錯誤。

(出示投影1)

例求8,-8的絕對值。

師:觀察數軸做出此題。

學生活動:口答

師:由此題目你能想到什么規律?

學生活動:討論得出—互為相反數的兩數絕對值相同。

【教法說明】這一環節是對絕對值的幾何定義的鞏固。這里對于絕對值定義的理解不能空談"5的絕對值、-7的絕對值是多少"?而是與數軸相結合,始終利用表示這數的點到原點的距離是這個數的絕對值這一概念。教師先闡明這個字母可表示任意數,再把換成一組數,學生自己又把換成了一些數,指出它們的絕對值,這樣既理解了數所表示的廣泛含義,又鞏固了絕對值的定義。然后,通過例題總結出了互為相反數的兩數的絕對值相等這一規律,既呼應了前面內容,又升華了絕對值的概念。

師:觀察數軸,在原點右邊的點表示的數(正數)的絕對值有什么特點?

在原點左邊的點表示的數(負數)的絕對值呢?

生:思考,不能輕易回答出來。

師:再看前面我們所求的,你能得出什么規律嗎?

學生活動:思考后一學生口答。

教師糾正并板書:

正數的絕對值是它本身。

負數的絕對值是它的相反數。

0的絕對值是0。

師:字母可表示任意的數,可以表示正數,也可以表示負數,也可以表示0。

教師引導學生用數學式子表示正數、負數、0,并再提問:這時的絕對值分別是多少?

學生活動:分組討論,教師加入討論,學生互相補充回答。

教師板書:

師強調:這種表示方法就相當于前面三句話,比較起來后者更通俗易懂。

【教法說明】用字母表示規律是難點。這時教師放手,讓學生有目的地考慮、分析,共同得出結論。

(四)歸納小結

師:這節課我們學習了絕對值。

(1)一個數的絕對值是在數軸上表示這個數的點到原點的距離;(2)求一個數的絕對值必須先判斷是正數還是負數。

回顧反饋:

(出示投影2)

1、-3的絕對值是在_____________上表示-3的點到__________的距離,-3的絕對值是____________。

2、絕對值是3的數有____________個,各是___________;絕對值是2、7的數有___________個,各是___________;絕對值是0的數有____________個,是____________。

絕對值是-2的數有沒有?

八、隨堂練習

1、判斷題

(1)數的絕對值就是數軸上表示數的點與原點的距離()(2)負數沒有絕對值()

(3)絕對值最小的數是0()

(4)如果甲數的絕對值比乙數的絕對值大,那么甲數一定比乙數大()(5)如果數的絕對值等于,那么一定是正數

2、填表

九、布置作業

課本第50頁2、4。

如何下載初中數學教案篇14

【說教學目標】

1、使學生理解邊邊邊公理的內容,能運用邊邊邊公理證明三角形全等,為證明線段相等或角相等創造條件;

2、繼續培養學生畫圖、實驗,發現新知識的能力。

【說重點難點】

1、難點:讓學生掌握邊邊邊公理的內容和運用公理的自覺性;

2、重點:靈活運用SSS判定兩個三角形是否全等。

【說教學過程】

一、創設問題情境,引入新課

請問同學,老師在黑板上畫得兩個三角形,△ABC與△全等嗎?你是如何判定的。

(同學們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與角,觀察是否有三條邊對應相等,三個角對應相等。)

上一節課我們已經探討了兩個三角形只滿足一個或兩個邊、角對應相等條件時,兩個三角形不一定全

等。滿足三個條件時,兩個三角形是否全等呢?現在,我們就一起來探討研究。

二、實踐探索,總結規律

1、問題1:如果兩個三角形的三條邊分別相等,那么這兩個三角形會全等嗎?做一做:給你三條線段,分別為,你能畫出這個三角形嗎?

先請幾位同學說說畫圖思路后,教師指導,同學們動手畫,教師演示并敘述書寫出步驟。

步驟:

(1)畫一線段AB使它的`長度等于c(4.8cm)。

(2)以點A為圓心,以線段b(3cm)的長為半徑畫圓弧;以點B為圓心,以線段a(4cm)的長為半徑畫圓弧;兩弧交于點C.

(3)連結AC、BC.

△ABC即為所求

把你畫的三角形與其他同學的圖形疊合在一起,你們會發現什么?

換三條線段,再試試看,是否有同樣的結論

請你結合畫圖、對比,說說你發現了什么?

同學們各抒己見,教師總結:給定三條線段,如果它們能組成三角形,那么所畫的三角形都是全等的。這樣我們就得到判定三角形全等的一種簡便的方法:如果兩個三角形的三條邊分別對應相等,那么這兩個三角形全等。簡寫為邊邊邊,或簡記為(S.S.S.)。

2、問題2:你能用相似三角形的判定法解釋這個(SSS)三角形全等的判定法嗎?

(我們已經知道,三條邊對應成比例的兩個三角形相似,而相似比為1時,三條邊就分別對應相等了,這兩個三角形不但形狀相同,而且大小都一樣,即為全等三角形。)

3、問題3、你用這個SSS三角形全等的判定法解釋三角形具有穩定性嗎?

(只要三角形三邊的長度確定了,這個三角形的形狀和大小就完全確定了)

4、范例:

例1如圖19.2.2,四邊形ABCD中,AD=BC,AB=DC,試說明△ABC≌△CDA.解:已知AD=BC,AB=DC,又因為AC是公共邊,由(S.S.S.)全等判定法,可知△ABC≌△CDA

5、練習:

6、試一試:已知一個三角形的三個內角分別為、、,你能畫出這個三角形嗎?把你畫的三角形與同伴畫的進行比較,你發現了什么?

(所畫出的三角形都是相似的,但大小不一定相同)。

三個對應角相等的兩個三角形不一定全等。

三、加強練習,鞏固知識

1、如圖,,,△ABC≌△DCB全等嗎?為什么?

2、如圖,AD是△ABC的中線,。與相等嗎?請說明理由。

四、小結

本節課探討出可用(SSS)來判定兩個三角形全等,并能靈活運用(SSS)來判定三角形全等。三個角對應相等的兩個三角不一定會全等。

如何下載初中數學教案篇15

【學習目標】

1.借助數軸,初步理解絕對值和相反數的概念,能求一個數的絕對值和相反數,2.會利用絕對值比較兩負數的大小;學習數形結合的數學方法和分類討論的思想。

3.會與人合作,并能與他人交流思想的過程和結果;

【學習方法】

自主探究與合作交流相結合。

【學習重難點】

重點:會求一個數的絕對值和相反數,會利用絕對值比較兩負數的大小。

難點:對絕對值和相反數的代數意義、幾何意義的理解。

【學習過程】

模塊一預習反饋

一、學習準備

1.數軸:規定了__、__、__的一條直線叫做__.

2.數軸上兩個點表示的數,右邊的總比左邊的;正數大于,負數小于,正數大于一切。

3.請同學們閱讀教材p30—p32,預習過程中請注意:⑴不懂的地方要用紅筆標記符號;⑵完成你力所能及的習題和課后作業。

二、精讀教材

4.相反數的意義

+3與—3,—5與+5,—1.5與1.5這三對數有什么共同點?還能列舉出這樣的數嗎?

歸納:如果兩個數只有__不同,那么稱其中一個數為另一個數的__,也稱這兩個數__.特別地,0的相反數是__。如,+3的相反數是—3,也可以說+3與—3互為相反數。相反數是成對出現的,不能單獨存在。

《2.3絕對值》課時練習

一、選擇題(共10題)

1.有理數的絕對值一定是()

A.正數B.負數

C.零或正數D.零或負數

答案:C

解析:解答:根據絕對值的定義可知:正數的絕對值是它本身,負數的絕對值是正數,零的絕對值是零;所以答案選擇C選項

分析:考查有理數的絕對值,注意正數的絕對值是它本身,負數的絕對值是正數,零的絕對值是零

2.絕對值等于它本身的數有()

A.0個B.1個C.2個D.無數個

答案:D

解析:解答:根據絕對值得定義可知正數和零的絕對值是它本身,所以答案選擇D選項

分析:考查絕對值這一知識點.

3.相反數等于-5的數是()

A.5B.-5C.5或-5D.不能確定

答案:A

解析:解答:根據相反數的定義可知,互為相反數的兩個數只有符號不同,所以答案選擇A選項

分析:考查相反數的基本概念。

2.3絕對值》同步練習

10.如果a=-a,下列成立的是()

A.-a一定是非負數B.-a一定是負數

C.a一定是正數D.a不能是0

11.下列說法:①一個數的絕對值一定是正數;②-a一定是一個負數;③沒有絕對值為-3的數;④若a=a,則a是一個正數;⑤-20__的絕對值是20__.其中正確的有__.(填序號)

12.若絕對值相等的兩個數在數軸上的對應點的距離為6,則這兩個數為()

A.+6和-6B.-3和+3C.-3和+6D.-6和+3

如何下載初中數學教案篇16

教學目標:

1、通過解題,使學生了解到數學是具有趣味性的。

2、培養學生勤于動腦的習慣。

教學過程:

一、出示趣味題

師:老師這里有一些有趣的問題,希望大家開動腦筋,積極思考。

1、小衛到文具店買文具,他買毛筆用去了所帶錢的一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問小衛原有()錢?

2、蘋蘋做加法,把一個加數22錯寫成12,算出結果是48,問正確結果是()。

3、小明做減法,把減數30寫成20,這樣他算出的得數比正確得數多(),如果小明算出的結果是10,正確結果是()。

4、同學們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種

辦法來用△表示。

5、把一段布5米,一次剪下1米,全部剪下要()次。

6、李小松有10本本子,送給小剛2本后,兩人本子數同樣多,小剛原來

有()本本子。

二、小組討論

三、指名講解

四、評價

1、同學互評

2、老師點評

五、小結

師:通過今天的學習,你有哪些收獲呢?

如何下載初中數學教案篇17

一、教學目標

1、了解推理、證明的格式,理解判定定理的證法、

2、掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證、

3、通過第二個判定定理的推導,培養學生分析問題、進行推理的能力、

4、使學生了解知識來源于實踐,又服務于實踐,只有學好文化知識,才有解決實際問題的本領,從而對學生進行學習目的的&39;教育、

二、學法引導

1、教師教法:啟發式引導發現法、

2、學生學法:積極參與、主動發現、發展思維、

三、重點、難點及解決辦法

(一)重點

判定定理的推導和例題的解答、

(二)難點

使用符號語言進行推理、

(三)解決辦法

1、通過教師正確引導,學生積極思維,發現定理,解決重點、

2、通過教師指導,學生自行完成推理過程,解決難點及疑點、

四、課時安排

1課時

五、教具學具準備

三角板、投影儀、自制膠片、

六、師生互動活動設計

1、通過設計練習,復習基礎,創造情境,引入新課、

2、通過教師指導,學生探索新知,練習鞏固,完成新授、

3、通過學生自己總結完成小結、

七、教學步驟

(一)明確目標

掌握平行線的第二個定理的推理,并能運用其進行簡單的證明,培養學生的邏輯思維能力、

(二)整體感知

以情境創設,設計懸念,引出課題,以引導學生的思維,發現新知,以變式訓練鞏固新知、

(三)教學過程

創設情境,復習引入

師:上節課我們學習了平行線的判定公理和一種判定方法,根據所學看下面的問題(出示投影)、

學生活動:學生口答第1、2題、

師:你能說出有什么條件,就可以判定兩條直線平行呢?

學生活動:由第l、2題,學生思考分析,只要有同位角相等或內錯角相等,就可以判定兩條直線平行、

教師將第3題圖形畫在黑板上、

學生活動:學生口答理由,同角的補角相等、

師:要求學生寫出符號推理過程,并板書、

教法說明:本節課是前一節課的繼續,是在前一節課的基礎上進行學習的,所以通過第1、2兩題復習上節課所學平行線判定的兩個方法,使學生明確,只要有同位角相等或內錯角相等,就可以判定兩條直線平行、第3題是為推導本節到定定理做鋪墊,即如果同旁內角互補,則可以推出同位角相等,也可以推出內錯角相等,為定理的推理論證,分散了難點、

師:第4題是一個實際問題,題目中已知的兩個角是什么位置關系角?

學生活動:同分內角、

師:它們有什么關系、

學生活動:互補、

師:這個問題就是知道同分內角互補了,那么兩條直線是不是平行的呢?這就是這節課我們要研究的問題、

如何下載初中數學教案篇18

教學設計思想:本節安排1課時講授;影子是生活中常見的現象,教學中引用太陽光照射下的影子種種生活中的實例,目的是讓學生體會影子在生活中的存在,激發學習的興趣。課前布置作業讓學生觀察不同時刻物體影子的變化,親自感受變化的情況,再通過教師講授逐步加深對投影相關概念的理解,并掌握其應用。

教學目標:

1.知識與技能

經歷實踐、探索的過程,知道平行投影、正投影的含義;

能夠確定物體在太陽光下的影子的特征;

知道在不同時刻物體在太陽光下形成的影子的大小和方向是不同的。

2.過程與方法

通過觀察、想象、實踐形成一定的空間想象能力,發展空間觀念;

探索不同時刻不同物體的影子的變化規律:影子長的比等于物體高度的比。

3.情感、態度與價值觀

通過理論研究自然現象,引發對大自然和社會生活探索的欲望,提高學習興趣,增進數學的應用意識。

教學重點:理解平行投影的含義。

教學難點:通過對平行投影的認識進行物體與投影之間的相互轉化。

教學方法:啟發式。

教學安排:1課時。

教學媒體:幻燈片。

教學過程:

課前準備:讓學生在課前觀察物體在陽光下的影子,自己總結出一些結論。

一、創設情景

問題1:

師:請看這幅圖片,哪位同學知道這是什么?(提出問題,激發學生的興趣)

教師陳述:日晷是我國古代利用日影測定時刻的儀器,它由“晷面”和“晷針”組成。

當太陽光照在日晷上時,晷針的影子就會投向晷面。隨著時間的推移,晷針的影子在晷面上慢慢地移動。以此來顯示時刻。(看下圖)

設疑激趣:利用古代顯示時刻的物體來引起學生的興趣。

二、引出課題

問題2:

師:太陽光可看成平行的直線,在陽光下,我們經常看見物體的影子,那同學們你們知道影子的長短和方向在一天中是怎樣變化的嗎?

下面我們來看幾副圖片:(幻燈顯示)

(1)(2)(3)

上面的三幅圖是在我國北方某地某天上午不同時刻的同一位置拍攝的,請根據樹的影子,判斷拍攝的先后順序,并說明理由。

生:通過這幾天觀察,如果上午觀察物體的影子,都是逐漸變短的一個過程,所以拍攝的先后順序是:(3)→(2)→(1)。

師:這位同學回答的很正確;但是哪位同學能解釋一下呢?

生:上午太陽從東方地平線上升起,逐漸升高,這里我們把太陽光線看成平行的直線,根據以前我們學過的幾何知識,通過畫圖,顯而易見影子隨著太陽的升高逐漸變短的。

師:回答的很好;根據上面的總結,我們觀看下面的圖片,觀察有什么變化?

在我國北方地區,人們居住的房屋窗戶大多是朝南的,中午某時刻室內的窗影在一年四季里會有什么變化呢?

學生相互討論,交流。

生:夏天的時候影子是最短的,冬天是最長的,春秋次之。

活動:學生有豐富的關于影子的生活經驗,讓他們結合經驗想象自己的影子從早到晚是如何變化的(包括大小和方向)?并叫三個學生代表太陽、物體、影子,模擬太陽東升西落。得出結論:大——小——大;西——北偏西——正北——北偏東——東。

教師總結:物體在光線的照射下,會在地面或墻面上留下它的影子,這種現象就是投影(projection)。

太陽的光線可看做平行線的,像這樣的光線照射在物體上,所形成的投影叫做平行投影。光線是投影線,地面或墻面是投影面。

如上圖,用一束平行光線豎直照射水平放置的三角尺上,投影線、三角尺在水平面上的投影是平行投影。在這種平行投影中,光線是豎直照射在水平面上的。像這種平行投影又叫做正投影。

現在大家對投影有了一定的了解,再看下面這個圖形,思考問題:[

如圖,正方體正面(R面)在V面上的正投影。

1.R面的正投影是什么圖形?與R面相對的面的在正投影是什么圖形?

2.Q面的正投影是什么圖形?與Q面相對的面的正投影是什么圖形?

3.P面及與它相對的面的正投影分別是什么圖形?

學生相應回答上面的問題。

師:我們學習了投影的相關概念,也觀看了許多投影的圖片,那同學們思考這樣的問題:

(1)一個物體的正投影是立體圖形還是平面圖形?

(2)點、線段和多邊形的正投影可能分別是什么圖形?

第一問顯而易見,教師可以找中下等學生回答。

第二問教師可以通過課件演示,學生觀看,回答問題。(參看課件:點、線、面的投影)

師生互動:

例:旗桿直立在A處,它的平行投影如圖所示。

(1)請畫出小明站在B處時的投影(用線段表示)。并說明你這樣畫的理由。

(2)如果小明站在C處,請畫出他的投影(用線段表示),并比較小明站在B、C兩處投影的長短。

(3)旗桿的高度與它投影長的比和小明的身高與他投影長的比有什么關系?為什么?

學生在教師的引導下,自主完成這道例題,教師再進行講解。

教師總結:一般地,兩個直立于地面的物體在陽光下的投影,或平行或在同一條直線上,兩個物體、他們的平行投影及過物體頂端的投影線,分別組成直角三角形,這兩個三角形相似。

三、練習

1.大致說出我國北方的確一天中(早晨、中午、傍晚),人在陽光下的投影的方向和長短。

2.下圖是一棵大樹在陽光下的投影,請畫出另一棵樹的投影(用線段表示)。

3.結合地理知識,談談在我國哪些地區會有太陽直射現象。這時人的投影是什么樣的?

四、課堂總結

板書設計:

平行投影

一、導入平行投影

問題1:正投影

二、新授例:

問題2:

三、練習

投影:

四、總結

73402 主站蜘蛛池模板: 电动高压冲洗车_价格-江苏速利达机车有限公司 | Q361F全焊接球阀,200X减压稳压阀,ZJHP气动单座调节阀-上海戎钛 | 深圳APP开发公司_软件APP定制开发/外包制作-红匣子科技 | 百方网-百方电气网,电工电气行业专业的B2B电子商务平台 | 高压无油空压机_无油水润滑空压机_水润滑无油螺杆空压机_无油空压机厂家-科普柯超滤(广东)节能科技有限公司 | 欧洲MV日韩MV国产_人妻无码一区二区三区免费_少妇被 到高潮喷出白浆av_精品少妇自慰到喷水AV网站 | 仪器仪表网 - 永久免费的b2b电子商务平台 | 木材烘干机,木炭烘干机,纸管/佛香烘干设备-河南蓝天机械制造有限公司 | 接地电阻测试仪[厂家直销]_电缆故障测试仪[精准定位]_耐压测试仪-武汉南电至诚电力设备 | 首页 - 军军小站|张军博客| 无线讲解器-导游讲解器-自助讲解器-分区讲解系统 品牌生产厂家[鹰米讲解-合肥市徽马信息科技有限公司] | bkzzy在职研究生网 - 在职研究生招生信息咨询平台 | 搜木网 - 木业全产业链交易平台,免费搜货、低价买货! | 船老大板材_浙江船老大全屋定制_船老大官网| 深圳网站建设-高端企业网站开发-定制网页设计制作公司 | 酒万铺-酒水招商-酒水代理 | 石牌坊价格石牌坊雕刻制作_石雕牌坊牌楼石栏杆厂家_山东嘉祥石雕有限公司 | 滚筒线,链板线,总装线,流水线-上海体能机电有限公司 | 优宝-汽车润滑脂-轴承润滑脂-高温齿轮润滑油脂厂家 | 全自动五线打端沾锡机,全自动裁线剥皮双头沾锡机,全自动尼龙扎带机-东莞市海文能机械设备有限公司 | 杭州月嫂技术培训服务公司-催乳师培训中心报名费用-产后康复师培训机构-杭州优贝姆健康管理有限公司 | 纸箱抗压机,拉力机,脂肪测定仪,定氮仪-山东德瑞克仪器有限公司 | 拉力机-拉力试验机-万能试验机-电子拉力机-拉伸试验机-剥离强度试验机-苏州皖仪实验仪器有限公司 | 咖啡加盟,咖啡店加盟连锁品牌-卡小逗| 档案密集架,移动密集架,手摇式密集架,吉林档案密集架-厂家直销★价格公道★质量保证 | 铝单板_铝窗花_铝单板厂家_氟碳包柱铝单板批发价格-佛山科阳金属 | 德国进口电锅炉_商用电热水器_壁挂炉_电采暖器_电热锅炉[德国宝] | 苏州防水公司_厂房屋面外墙防水_地下室卫生间防水堵漏-苏州伊诺尔防水工程有限公司 | 合同书格式和范文_合同书样本模板_电子版合同,找范文吧 | 电动葫芦|手拉葫芦|环链电动葫芦|微型电动葫芦-北京市凌鹰起重机械有限公司 | 齿轮减速机_齿轮减速电机-VEMT蜗轮蜗杆减速机马达生产厂家瓦玛特传动瑞环机电 | 多米诺-多米诺世界纪录团队-多米诺世界-多米诺团队培训-多米诺公关活动-多米诺创意广告-多米诺大型表演-多米诺专业赛事 | 不锈钢水管-不锈钢燃气管-卫生级不锈钢管件-不锈钢食品级水管-广东双兴新材料集团有限公司 | 恒温恒湿箱(药品/保健品/食品/半导体/细菌)-兰贝石(北京)科技有限公司 | 临时厕所租赁_玻璃钢厕所租赁_蹲式|坐式厕所出租-北京慧海通 | 编织人生 - 权威手工编织网站,编织爱好者学习毛衣编织的门户网站,织毛衣就上编织人生网-编织人生 | 塑料托盘厂家直销-吹塑托盘生产厂家-力库塑业【官网】 | 一氧化氮泄露报警器,二甲苯浓度超标报警器-郑州汇瑞埔电子技术有限公司 | 阻燃剂-氢氧化镁-氢氧化铝-沥青阻燃剂-合肥皖燃新材料 | 高精度-恒温冷水机-螺杆式冰水机-蒸发冷冷水机-北京蓝海神骏科技有限公司 | 理化生实验室设备,吊装实验室设备,顶装实验室设备,实验室成套设备厂家,校园功能室设备,智慧书法教室方案 - 东莞市惠森教学设备有限公司 |