初中數學教案案例模板
教案可以幫助教師更好地評估學生的學習效果,從而更好地調整教學策略。要怎么寫初中數學教案案例模板呢?下面給大家分享一些初中數學教案案例模板,供大家參考。
初中數學教案案例模板篇1
課題名稱:完全平方公式(1)
一、內容簡介
本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。
關鍵信息:
1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。
2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。
二、學習者分析:
1、在學習本課之前應具備的基本知識和技能:
①同類項的定義。
②合并同類項法則
③多項式乘以多項式法則。
2、學習者對即將學習的內容已經具備的水平:
在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。
三、教學/學習目標及其對應的課程標準:
(一)教學目標:
1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。
2、會推導完全平方公式,并能運用公式進行簡單的計算。
(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理
數、實數、代數式、防城、不等式、函數;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、防城、不等式、函數等進行描述。
(四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同
角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。
(五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難
和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。
四、教育理念和教學方式:
1、教師是學生學習的組織者、促進者、合作者:學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經歷,用自己的心靈去親自感悟。
教學是師生交往、積極互動、共同發展的過程。當學生迷路的時
候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內在的精神動力,鼓勵他不斷向上攀登。
2、采用“問題情景—探究交流—得出結論—強化訓練”的模式
展開教學。
3、教學評價方式:
(1)通過課堂觀察,關注學生在觀察、總結、訓練等活動中的主
動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。
(2)通過判斷和舉例,給學生更多機會,在自然放松的狀態下,
揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調查教學。
(3)通過課后訪談和作業分析,及時查漏補缺,確保達到預期的
教學效果。
五、教學媒體:多媒體六、教學和活動過程:
教學過程設計如下:
〈一〉、提出問題
[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點。
(2)結果的項數特點。
(3)三項系數的特點(特別是符號的特點)。
(4)三項與原多項式中兩個單項式的關系。
2、[學生回答]總結完全平方公式的語言描述:
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學生回答]完全平方公式的數學表達式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判斷:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小試牛刀
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[學生小結]
你認為完全平方公式在應用過程中,需要注意那些問題?
(1)公式右邊共有3項。
(2)兩個平方項符號永遠為正。
(3)中間項的符號由等號左邊的兩項符號是否相同決定。
(4)中間項是等號左邊兩項乘積的2倍。
〈五〉、冒險島:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、學生自我評價
[小結]通過本節課的學習,你有什么收獲和感悟?
本節課,我們自己通過計算、分析結果,總結出了完全平方公式。在知識探索的過程中,同學們積極思考,大膽探索,團結協作共同取得了進步。
〈七〉[作業]P34隨堂練習P36習題
初中數學教案案例模板篇2
三維目標
一、知識與技能
1.能靈活列反比例函數表達式解決一些實際問題.
2.能綜合利用物理杠桿知識、反比例函數的知識解決一些實際問題.
二、過程與方法
1.經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題.
2.體會數學與現實生活的緊密聯系,增強應用意識,提高運用代數方法解決問題的能力.
三、情感態度與價值觀
1.積極參與交流,并積極發表意見.
2.體驗反比例函數是有效地描述物理世界的重要手段,認識到數學是解決實際問題和進行交流的重要工具.
教學重點
掌握從物理問題中建構反比例函數模型.
教學難點
從實際問題中尋找變量之間的關系,關鍵是充分運用所學知識分析物理問題,建立函數模型,教學時注意分析過程,滲透數形結合的思想.
教具準備
多媒體課件.
教學過程
一、創設問題情境,引入新課
活動1
問屬:在物理學中,有很多量之間的變化是反比例函數的關系,因此,我們可以借助于反比例函數的圖象和性質解決一些物理學中的問題,這也稱為跨學科應用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培.
(1)求I與R之間的函數關系式;
(2)當電流I=0.5時,求電阻R的值.
設計意圖:
運用反比例函數解決物理學中的一些相關問題,提高各學科相互之間的綜合應用能力.
師生行為:
可由學生獨立思考,領會反比例函數在物理學中的綜合應用.
教師應給“學困生”一點物理學知識的引導.
師:從題目中提供的信息看變量I與R之間的反比例函數關系,可設出其表達式,再由已知條件(I與R的一對對應值)得到字母系數k的值.
生:(1)解:設I=kR∵R=5,I=2,于是
2=k5,所以k=10,∴I=10R.
(2)當I=0.5時,R=10I=100.5=20(歐姆).
師:很好!“給我一個支點,我可以把地球撬動.”這是哪一位科學家的名言?這里蘊涵著什么樣的原理呢?
生:這是古希臘科學家阿基米德的名言.
師:是的.公元前3世紀,古希臘科學家阿基米德發現了著名的“杠桿定律”:若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;
阻力×阻力臂=動力×動力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動2
小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動力F與動力臂l有怎樣的函數關系?當動力臂為1.5米時,撬動石頭至少需要多大的力?
(2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?
設計意圖:
物理學中的很多量之間的變化是反比例函數關系.因此,在這兒又一次借助反比例函數的圖象和性質解決一些物理學中的問題,即跨學科綜合應用.
師生行為:
先由學生根據“杠桿定律”解決上述問題.
教師可引導學生揭示“杠桿乎衡”與“反比例函數”之間的關系.
教師在此活動中應重點關注:
①學生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數的關系;
②學生能否面對困難,認真思考,尋找解題的途徑;
③學生能否積極主動地參與數學活動,對數學和物理有著濃厚的興趣.
師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據“杠桿定律”有
Fl=1200×0.5.得F=600l
當l=1.5時,F=6001.5=400.
因此,撬動石頭至少需要400牛頓的力.
(2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據“杠桿定律”有
Fl=600,
l=600F.
當F=400×12=200時,
l=600200=3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米.
生:也可用不等式來解,如下:
Fl=600,F=600l.
而F≤400×12=200時.
600l≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米.
生:還可由函數圖象,利用反比例函數的性質求出.
師:很棒!請同學們下去親自畫出圖象完成,現在請同學們思考下列問題:
用反比例函數的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?
生:因為阻力和阻力臂不變,設動力臂為l,動力為F,阻力×阻力臂=k(常數且k>0),所以根據“杠桿定理”得Fl=k,即F=kl(k為常數且k>0)
根據反比例函數的性質,當k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力.
師:其實反比例函數在實際運用中非常廣泛.例如在解決經濟預算問題中的應用.
活動3
問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當x=0.65元時,y=0.8.(1)求y與x之間的函數關系式;(2)若每度電的成本價0.3元,電價調至0.6元,請你預算一下本年度電力部門的純收人多少?
設計意圖:
在生活中各部門,經常遇到經濟預算等問題,有時關系到因素之間是反比例函數關系,對于此類問題我們往往由題目提供的信息得到變量之間的函數關系式,進而用函數關系式解決一個具體問題.
師生行為:
由學生先獨立思考,然后小組內討論完成.
教師應給予“學困生”以一定的幫助.
生:解:(1)∵y與x-0.4成反比例,
∴設y=kx-0.4(k≠0).
把x=0.65,y=0.8代入y=kx-0.4,得
k0.65-0.4=0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數關系為y=15x-2
(2)根據題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2)=0.3(1+10.6×5-2)=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數關系,把x-0.4看成一個變量,于是可設出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動4
一定質量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數,請根據下圖中的已知條件求出當密度ρ=1.1kg/m3時二氧化碳氣體的體積V的值.
設計意圖:
進一步體現物理和反比例函數的關系.
師生行為
由學生獨立完成,教師講評.
師:若要求出ρ=1.1kg/m3時,V的值,首先V和ρ的函數關系.
生:V和ρ的反比例函數關系為:V=990ρ.
生:當ρ=1.1kg/m3根據V=990ρ,得
V=990ρ=9901.1=900(m3).
所以當密度ρ=1.1kg/m3時二氧化碳氣體的氣體為900m3.
四、課時小結
活動5
你對本節內容有哪些認識?重點掌握利用函數關系解實際問題,首先列出函數關系式,利用待定系數法求出解析式,再根據解析式解得.
設計意圖:
這種形式的小結,激發了學生的主動參與意識,調動了學生的學習興趣,為每一位學生都創造了在數學學習活動中獲得成功的體驗機會,并為程度不同的學生提供了充分展示自己的機會,尊重學生的個體差異,滿足多樣化的學習需要,從而使小結不流于形式而具有實效性.
師生行為:
學生可分小組活動,在小組內交流收獲,然后由小組代表在全班交流.
教師組織學生小結.
反比例函數與現實生活聯系非常緊密,特別是為討論物理中的一些量之間的關系打下了良好的基礎.用數學模型的解釋物理量之間的關系淺顯易懂,同時不僅要注意跨學科間的綜合,而本學科知識間的整合也尤為重要,例如方程、不等式、函數之間的不可分割的關系.
板書設計
17.2實際問題與反比例函數(三)
1.
2.用反比例函數的知識解釋:在我們使用撬棍時,為什么動力臂越長越省力?
設阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數且k>0).動力和動力臂分別為F,l.則根據杠桿定理,
Fl=k即F=kl(k>0且k為常數).
由此可知F是l的反比例函數,并且當k>0時,F隨l的增大而減?。?/p>
活動與探究
學校準備在校園內修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數關系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數表達式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應控制在什么范圍內?
x(m)10203040
y(m)
過程:點A(40,10)在反比例函數圖象上說明點A的橫縱坐標滿足反比例函數表達式,代入可求得反比例函數k的值.
結果:(1)綠化帶面積為10×40=400(m2)
設該反比例函數的表達式為y=kx,
∵圖象經過點A(40,10)把x=40,y=10代入,得10=k40,解得,k=400.
∴函數表達式為y=400x.
(2)把x=10,20,30,40代入表達式中,求得y分別為40,20,403,10.從圖中可以看出。若長不超過40m,則它的寬應大于等于10m。
初中數學教案案例模板篇3
教學設計思想:本節安排1課時講授;影子是生活中常見的現象,教學中引用太陽光照射下的影子種種生活中的實例,目的是讓學生體會影子在生活中的存在,激發學習的興趣。課前布置作業讓學生觀察不同時刻物體影子的變化,親自感受變化的情況,再通過教師講授逐步加深對投影相關概念的理解,并掌握其應用。
教學目標:
1.知識與技能
經歷實踐、探索的過程,知道平行投影、正投影的含義;
能夠確定物體在太陽光下的影子的特征;
知道在不同時刻物體在太陽光下形成的影子的大小和方向是不同的。
2.過程與方法
通過觀察、想象、實踐形成一定的空間想象能力,發展空間觀念;
探索不同時刻不同物體的影子的變化規律:影子長的比等于物體高度的比。
3.情感、態度與價值觀
通過理論研究自然現象,引發對大自然和社會生活探索的欲望,提高學習興趣,增進數學的應用意識。
教學重點:理解平行投影的含義。
教學難點:通過對平行投影的認識進行物體與投影之間的相互轉化。
教學方法:啟發式。
教學安排:1課時。
教學媒體:幻燈片。
教學過程:
課前準備:讓學生在課前觀察物體在陽光下的影子,自己總結出一些結論。
一、創設情景
問題1:
師:請看這幅圖片,哪位同學知道這是什么?(提出問題,激發學生的興趣)
教師陳述:日晷是我國古代利用日影測定時刻的儀器,它由“晷面”和“晷針”組成。
當太陽光照在日晷上時,晷針的影子就會投向晷面。隨著時間的推移,晷針的影子在晷面上慢慢地移動。以此來顯示時刻。(看下圖)
設疑激趣:利用古代顯示時刻的物體來引起學生的興趣。
二、引出課題
問題2:
師:太陽光可看成平行的直線,在陽光下,我們經常看見物體的影子,那同學們你們知道影子的長短和方向在一天中是怎樣變化的嗎?
下面我們來看幾副圖片:(幻燈顯示)
(1)(2)(3)
上面的三幅圖是在我國北方某地某天上午不同時刻的同一位置拍攝的,請根據樹的影子,判斷拍攝的先后順序,并說明理由。
生:通過這幾天觀察,如果上午觀察物體的影子,都是逐漸變短的一個過程,所以拍攝的先后順序是:(3)→(2)→(1)。
師:這位同學回答的很正確;但是哪位同學能解釋一下呢?
生:上午太陽從東方地平線上升起,逐漸升高,這里我們把太陽光線看成平行的直線,根據以前我們學過的幾何知識,通過畫圖,顯而易見影子隨著太陽的升高逐漸變短的。
師:回答的很好;根據上面的總結,我們觀看下面的圖片,觀察有什么變化?
在我國北方地區,人們居住的房屋窗戶大多是朝南的,中午某時刻室內的窗影在一年四季里會有什么變化呢?
學生相互討論,交流。
生:夏天的時候影子是最短的,冬天是最長的,春秋次之。
活動:學生有豐富的關于影子的生活經驗,讓他們結合經驗想象自己的影子從早到晚是如何變化的(包括大小和方向)?并叫三個學生代表太陽、物體、影子,模擬太陽東升西落。得出結論:大——小——大;西——北偏西——正北——北偏東——東。
教師總結:物體在光線的照射下,會在地面或墻面上留下它的影子,這種現象就是投影(projection)。
太陽的光線可看做平行線的,像這樣的光線照射在物體上,所形成的投影叫做平行投影。光線是投影線,地面或墻面是投影面。
如上圖,用一束平行光線豎直照射水平放置的三角尺上,投影線、三角尺在水平面上的投影是平行投影。在這種平行投影中,光線是豎直照射在水平面上的。像這種平行投影又叫做正投影。
現在大家對投影有了一定的了解,再看下面這個圖形,思考問題:[
如圖,正方體正面(R面)在V面上的正投影。
1.R面的正投影是什么圖形?與R面相對的面的在正投影是什么圖形?
2.Q面的正投影是什么圖形?與Q面相對的面的正投影是什么圖形?
3.P面及與它相對的面的正投影分別是什么圖形?
學生相應回答上面的問題。
師:我們學習了投影的相關概念,也觀看了許多投影的圖片,那同學們思考這樣的問題:
(1)一個物體的正投影是立體圖形還是平面圖形?
(2)點、線段和多邊形的正投影可能分別是什么圖形?
第一問顯而易見,教師可以找中下等學生回答。
第二問教師可以通過課件演示,學生觀看,回答問題。(參看課件:點、線、面的投影)
師生互動:
例:旗桿直立在A處,它的平行投影如圖所示。
(1)請畫出小明站在B處時的投影(用線段表示)。并說明你這樣畫的理由。
(2)如果小明站在C處,請畫出他的投影(用線段表示),并比較小明站在B、C兩處投影的長短。
(3)旗桿的高度與它投影長的比和小明的身高與他投影長的比有什么關系?為什么?
學生在教師的引導下,自主完成這道例題,教師再進行講解。
教師總結:一般地,兩個直立于地面的物體在陽光下的投影,或平行或在同一條直線上,兩個物體、他們的平行投影及過物體頂端的投影線,分別組成直角三角形,這兩個三角形相似。
三、練習
1.大致說出我國北方的確一天中(早晨、中午、傍晚),人在陽光下的投影的方向和長短。
2.下圖是一棵大樹在陽光下的投影,請畫出另一棵樹的投影(用線段表示)。
3.結合地理知識,談談在我國哪些地區會有太陽直射現象。這時人的投影是什么樣的?
四、課堂總結
板書設計:
平行投影
一、導入平行投影
問題1:正投影
二、新授例:
問題2:
三、練習
投影:
四、總結
初中數學教案案例模板篇4
教學目標
1、使學生能說出有理數大小的比較法則
2、能熟練運用法則結合數軸比較有理數的大小,特別是應用絕對值概念比較兩個負數的大小,能利用數軸對多個有理數進行有序排列。
3、能正確運用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關系。
三、教學重點與難點
重點:運用法則借助數軸比較兩個有理數的大小。
難點:利用絕對值概念比較兩個負分數的大小。
四、教學準備
多媒體課件
五、教學設計
(一)交流對話,探究新知
1、說一說
(多媒體顯示)某一天我們5個城市的最低氣溫 從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發學生的求知欲望,可能有些學生會說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學生會說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會說的,老師適當點拔,從而學生在合作交流中不知不覺地完成了以下填空。
比較這一天下列兩個城市間最低氣溫的高低(填"高于"或"低于")
廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。
2、畫一畫:(1)把上述5個城市最低氣溫的數表示在數軸上,(2)觀察這5個數在數軸上的位置,從中你發現了什么?
(3)溫度的高低與相應的數在數軸上的位置有什么?
(通過學生自己動手操作,觀察、思考,發現原點左邊的數都是負數,原點右邊的數都是正數;同時也發現5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數軸上原點右邊的兩個數,右邊的數總比左邊的數大。教師趁機追問,原點左邊的數也有這樣的規律嗎?從而激發學生探索知識的欲望,進一步驗證了原點左邊的數也有這樣的規律。從而使學生親身體驗探索的樂趣,在探究中不知不覺獲得了知識。)由小組討論后,教師歸納得出結論:
在數軸上表示的兩個數,右邊的數總比左邊的數大。
正數都大于零,負數都小于零,正數大于負數。
(二)應用新知,體驗成功
1、練一練(師生共同完成例1后,學生完成隨堂練習1)
例1:在數軸上表示數5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)
分析:本題意有幾層含義?應分幾步?
要點總結:小組討論歸納,本題解題時的一般步驟:①畫數軸②描點;③有序排列;④不等號連接。
隨堂練習: P19 T1
2、做一做
(1)在數軸上表示下列各對數,并比較它們的大小
①2和7 ②-6和-1 ③-6和-36 ④-和-1.5
(2)求出圖中各對數的絕對值,并比較它們的大小。
(3)由①、②從中你發現了什么?
(學生小組討論后,代表站起來發言,口述自己組的發現,說明自己組發現的過程,逐步培養學生觀察、歸納、用數學語言表達數學規律的能力。)
要點總結:兩個正數比較大小,絕對值大的數大;兩個負數比較大小,絕對值大的數反而小。
在學生討論的基礎上,由學生總結得出有理數大小的比較法則。
(1)正數都大于零,負數都小于零,正數大于負數。
(2)兩個正數比較大小,絕對值大的數大。
(3)兩個負數比較大小,絕對值大的數反而小。
3、師生共同完成例2后,學生完成隨堂練習2、3、4。
例2比較下列每對數的大小,并說明理由:(師生共同完成)
(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|
分析:第(4)(5)題較難,第(4)題應先通分,第(5)題應先化簡,再比較。同時在講解時,要注意格式。
注:絕對值比較時,分母相同,分子大的數大;分子相同,則分母大的數反而小;分子分母都不相同時,則應先通分再比較,或把分子化相同再比較。
兩個負數比較大小時的一般步驟:①求絕對值;②比較絕對值的大小;③比較負數的大小。
思考:還有別的方法嗎?(分組討論,積極思考)
4、想一想:我們有幾種方法來判斷有理數的大小?你認為它們各有什么特點?
由學生討論后,得出比較有理數的大小共有兩種方法,一種是法則,另一種是利用數軸,當兩個數比較時一般選用第一種,當多個有理數比較大小時,一般選用第二種較好。
練一練:P19 T2、3、4
5、考考你:請你回答下列問題:
(1)有沒有的有理數,有沒有最小的有理數,為什么?
(2)有沒有絕對值最小的有理數?若有,請把它寫出來?
(3)在于-1.5且小于4.2的整數有_____個,它們分別是____。
(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個數的大小嗎?(本題屬提高題,不要求全體學生掌握)
(新穎的問題會激發學生的好奇心,通過合作交流,自主探究等活動,培養學生思維的習慣和數學語言的表達能力)
6、議一議,談談本節課你有哪些收獲
(由師生共同完成本節課的小結)本節課主要學習了有理數大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數軸,運用這種方法時,首先必須把要比較的數在數軸上表示出來,然后按照它們在數軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個有理數大小時非常簡便。
六、布置作業:P19 A組、B組
基礎好的A、B兩組都做
基礎較差的同學選做A組。
初中數學教案案例模板篇5
①結合你對一元一次方程中的一次的理解,說一說你對一次函數中的“一次”的理解.②k可以是怎樣的`數?
③你怎樣認識一次函數和正比例函數的關系?
一個常數b的和即Y=kx+b定義:一般地,形
如
Y=kx+b(k,b是常數,k≠0)的函數,叫做一次函數,當
b=0時,
Y=kx+b即Y=kx,所以說正比例函數是一種特殊的一次函數。
例1、下列函數中,Y是X的一次函數的是()①Y=X-6②Y=3X③Y=X2④Y=7-X
學生獨立
A①②③B①③④C①②④D①②③④
例2、寫出下列各題中x與y之間的關系式,并判
解釋與應用
斷,y是否為x的一次函數?是否為正比例函數?①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的關系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關系:③一棵樹現在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關系式
初中數學教案案例模板篇6
一、說教材
1、本課在在教材中的地位和作用《分式的加減》這節課是代數運算的基礎,分兩課時完成,我所設計的是第一課時的教學,主要內容是同分母的分式相加減及簡單的異分母的分式相加減。學生已掌握了分數的加減法運算,同時也學習過分式的基本性質,這為本節課的學習打下了基礎,而掌握好本節課的知識,將為《分式的加減》第二課時以及《分式方程》的學習做好必備的知識儲備。
2、教學目標
①知識與技能:會進行簡單的分式加減運算,具有一定的代數化歸能力,能解決一些簡單的實際問題;
②過程與方法:使學生經歷探索分式加減運算法則的過程,理解其算理;
3、情感態度與價值觀:培養學生大膽猜想,積極探究的學習態度,發展學生有條理思考及代數表達能力,體會其價值。
4、重點、難點
①重點:掌握分式的加減運算
②難點:異分母的分式加減運算及簡單的分式混合運算
二、說教法
本課我主要以“創設情景——引導探究——類比歸納——拓展延伸”為主線,啟發和引導貫穿教學始終,通過師生共同研究探討,體現以教為主導、學為主體、練為主線的教學過程。
三、說學法
根據學生的認知水平,我設計了“自主探索、合作交流、猜想歸納和鞏固提高”四個層次的學法。四、說教學過程
(一)創設情境,導入新知
第一環節:提出問題
問題1:甲工程隊完成一項工程需n天,乙工程隊要比甲隊多用3天才能完成這項工程,兩隊共同工作一天完成這項工程的幾分之幾?
問題2:2001年,2002年,2003年某地的森林面積(單位:公頃)分別是S1,S2,S3,2003年與2002年相比,森林面積增長率提高了多少?
老師活動:組織學生分組討論,再共同研究學生活動:小組討論、探究、發言設計意圖:通過創設這兩個問題情境,引入分式的加減運算,既體現了分式加減運算的意義,又讓學生經歷從實際問題建立分式模型的過程,并在此基礎上激發學生尋求解決問題的方法。
第二環節:同分母分式相加減
想一想:(1)同分母的分數如何加減?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3;(2)思考:類比分數的加減法則,你能歸納出分式的加減法則嗎?老師活動:鼓勵學生通過類比、探究并大膽猜想分式的加減運算法則學生活動:分組進行討論、交流,并多舉類似例子進行類比,而后,小組發表意見,說明自己的推測。
在學生通過交流得到猜想的基礎上出示做一做:做一做:(1)1/a+2/a=_____________2(2)x/(x—2)–4/(x—2)=___________(3)(x+2)/(x+1)–(x—1)/(x+1)+(x—3)/(x+1)=___________教師通過讓學生練習“做一做”的題目,加以驗證和領悟,法則的形成打下基礎,并導出分式加減運算法則:同分母的`分式相加減,分母不變,把分子相加減老師活動:引入習題“做一做”,適當糾正學生的語言,并板書法則學生活動:通過個體練習,領悟規律,再小組交流,形成法則設計意圖:引導學生通過類比分數運算方法,大膽猜想分式的加減法則
(二)主動探究,拓展延伸
第三環節:異分母的分式相加減想一想:
(1)異分母的分數如何相加減?如:1/2+2/3=?:1/2—2/3=?。
(2)你認為異分母的分式應該如何加減?如:1/a+2/b=?老師活動:提出問題,引導、啟發學生通過異分母分數相加減的方法類比得到異分母分式相加減的方法學生活動:參與交流、討論、歸納異分母分式加減的方法設計意圖:進一步鍛煉學生的類比思想;同時通過討論解決分式的通分,使學生掌握異分母分式轉化為同分母分式的方法,培養學生的轉化思想,為下節課做好準備
(三)例題教學
第四環節:解決問題
(1)回到開始提出的兩個問題:s3?s2s2?s111?問題一:(?)s2s1nn?3問題二:
(2)例題1:計算(課本P81頁)老師活動:出示習題,巡視、引導、糾正學生活動:自主完成
設計意圖:進一步提高學生對異分母分式的加減運算能力
(四)隨堂練習
第五環節:鞏固深化
老師活動:巡視、引導學生活動:個體練習、板演設計意圖:檢驗學生是否掌握分式的加減運算方法(五)課堂小結第六環節:提高認識老師活動:本節課我們學了哪些知識?在運用過程中需要注意些什么?你有什么收獲?學生活動
歸納總結
(1)同分母分式加減法則
(2)簡單異分母分式的加減設計意圖:鍛煉學生及時總結的良好習慣和歸納能力(六)作業布置第七環節:反思提煉課本P27第1、2題五、板書設計
初中數學教案案例模板篇7
一、教材分析
1、教材的地位與作用:
有理數乘方是有理數的一種基本運算。從教材編排的結構上看,共需四個課時,本課為第一課時,是在學生學習加、減、乘、除運算的基礎上來學習的,它既是有理數乘法的推廣與延續,又是后面繼續學習有理數混合運算、科學記數法和開方的基礎,起到承前啟后、鋪路架橋的作用。
2、教學目標:
根據新課標的要求及七年級學生的認知水平,我將制定本節課的教學目標如下:
⑴、知識與技能:
讓學生理解并掌握有理數的乘方,冪,底數,指數的概念及意義;能夠正確進行有理數的乘方運算。
⑵、過程與方法:
在生動的情景中讓學生獲得有理數乘方的初步體驗;培養學生觀察、分析、歸納、概括的能力;經歷從乘法到乘方的推導過程,從中感受轉化的數學思想。
⑶、情感、態度和價值觀:
讓學生通過觀察、推理,歸納出有理數乘方的符號法則,增進學生學好數學的自信心;讓學生經歷知識的拓展過程,培養學生的探究能力與動手操作能力,體會與他人合作交流的重要性。
3、教學重點與難點:
有理數乘方的意義及運算是本節課的教學重點,而有理數乘方中冪,指數,底數的概念及其相互間關系的理解是本節課的教學難點。
二、教法學法
1、學情分析:
在知識掌握方面,由于學生剛學完有理數的加、減、乘、除運算,對許多概念、法則的理解不一定很深刻,容易造成知識的遺忘與混淆。所以在本節課的學習中應全面系統的加以講述。
在知識障礙方面,學生對有理數乘方中相關概念的理解及其符號規律的推導、應用方面可能會有模糊現象。所以在本節課的教學中應予以簡單明白,深入淺出的分析。
在學生特征方面:由于七年級學生具有好動、好問、好奇的心理特征。所以在教學中應抓住學生這一特征,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終在課堂上;另一方面要創造條件與機會,讓學生發表見解,發揮學生學習的主動性。
2、教學策略:
根據本節課的教學目標,教材內容并結合七年級學生的理解能力和思維特征。我將以多媒體為教學平臺,采用啟發式教學法與師生互動式教學模式。通過精心設計的問題與活動,不斷創造思維興奮點,讓學生在學習過程中親自動手操作,探索結論。教給學生多觀察、勤動手、大膽猜、肯鉆研的研討式學習方法,使學生在動腦、動手、動口的過程中獲得充足的體驗與發展,從而調動起學生的學習主動性與積極性。
三、教學過程
1、設置游戲,引入新課:
首先借助多媒體及課前準備好的硬紙片讓全體學生共同做兩個折紙游戲。
游戲一是把面積為1的長方形硬紙片沿中間對折,使兩邊能夠完全重合。引導學生思考:如此折疊五次后所得長方形的面積是多少?得出算式:____;
游戲二是讓學生把長方形紙片對折后再沿折痕剪開,將得到的所有紙片重合放置后再對折、剪開。如此操作五次之后共有多少張硬紙片?得出算式:2×2×2×2×2;
最后引導學生思考這兩個算式的特點,引入新課。
這個環節通過學生動手操作,使其從直觀上理解了乘方運算的特點,并為后續學習起到了導航作用。
2、合作交流,探索新知:
先讓學生分組討論下面算式特點:①____,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)
接著讓學生思考正方形面積與邊長a的關系,正方體體積與棱長a的關系,得出:a·a=a,a·a·a=a。然后讓學生類比出上面四個算式的記法與讀法,最后引導學生猜想:a·a·……·a的結果,總結出冪、底數與指數的概念。
n個a這個環節的設計意圖是讓學生從游戲結果出發,通過正方形面積與正方體體積的表示方法,類比出乘方的表示形式,總結出相關概念。既體現了學生思維的過程,又滲透了轉化思想。
3、遷移訓練,總結規律:
在這個環節中,我首先要求學生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙-﹚×﹙-﹚×﹙-﹚,④﹙-﹚×﹙-﹚寫成乘方的形式,并說出其底數和指數分別是多少?接著評析例1,結合例1的解題結果,總結出負數的冪的&39;正負的規律。然后啟發學生思考將例1各題的底數換為正數或0,結果會怎么樣呢?在學生練習討論的基礎上總結出有理數乘方的符號規律。即:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。最后結合例2,要求學生掌握計算器的用法,并運用計算器完成課本上的練習,進一步理解有理數乘方的符號規律。
本環節的設計意圖是通過變換例1的條件讓學生加以練習,進而歸納出結論。有利于調動學生學習的興趣,使其初步接觸到數學的奇妙,提高其積極性與主動性。
4、應用新知,嘗試練習:
本環節我主要設計了兩組練習,第一組練習是以運用符號規律為目的,讓學生通過計算﹙-2﹚、-2、﹙﹚,進一步掌握有理數乘方符號規律的運用方法,并使其在對比﹙-2﹚與-2,﹙﹚與的基礎上總結出:當底數為負數和分數時,一定要用括號把底數括起來。
第二組練習是以乘方的實際應用和綜合應用為目的而設計的,共兩個習題。希望借助第一題幫助學生學會運用所學的乘方知識解決實際問題,促使其樹立一個學數學、用數學的思想。而第二題則是乘方與有理數大小比較的綜合應用,可幫助學生提高數學分析能力和綜合解題能力。
5、歸納小結,形成體系:
首先鼓勵學生暢所欲言的總結本節課的收獲與體會;然后幫助學生自主建構知識體系;接著布置本節課的課內與課外作業;最后說一下本節課的板書設計。
初中數學教案案例模板篇8
教學目標
1.理解二元一次方程及二元一次方程的解的概念;
2.學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;
3.學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程.
教學過程
1.情景導入:
新聞鏈接:桐鄉70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.
2.新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程.
3.合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?
4.課堂練習:
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_
5.課堂總結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式.
作業布置
本章的課后的方程式鞏固提高練習。
初中數學教案案例模板篇9
1.知識結構
2.重點和難點分析
重點:本節的重點是平行四邊形的概念和性質.雖然平行四邊形的概念在小學學過,但對于概念本質屬性的理解并不深刻,為了加深學生對概念的理解,為以后學習特殊的平行四邊形打下基礎,所以教師不要忽視平行四邊形的概念教學.平行四邊形的性質是以后證明四邊形問題的基礎,也是學好全章的關鍵.尤其是平行四邊形性質定理的推論,推論的應用有兩個條件:
一個是夾在兩條平行線間;
一個是平行線段,具備這兩個條件才能得出一個結論平行線段相等,缺少任何一個條件結論都不成立,這也是學生容易犯錯的地方,教師要反復強調.
難點:本節的難點是平行四邊形性質定理的靈活應用.為了能熟練的應用性質定理及其推論,要把性質定理和推論的條件和結論給學生講清楚,哪幾個條件,決定哪個結論,如何用數學符號表示即書寫格式,都要在講練中反復強化.
3.教法建議
(1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調動學生的積極性.自己設計了一個動畫,建議老師們用它作為本節的引入,既可以激發學生的學習興趣,又可以激活學生的思維.
(2)在生產或生活中,平行四邊形是常見圖形之一,教師可以多給學生提供一些平行四邊形的圖片,增加學生的感性認識,然后,讓他們自己總結出平行四邊形的定義,教師最后做總結.平行四邊形是特殊的四邊形,要判定一個四邊形是不是平行四邊形,要判斷兩點:首先是四邊形,然后四邊形的兩組對邊分別平行.平行四邊形的定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質.
(3)對于教師來說講課固然重要,但講完課后有目的的強化訓練也是不可缺少的,通過做題,幫助學生更好的理解所講內容,也就是我們平時說的要反思回顧,總結深化.
平行四邊形及其性質第一課時
一、素質教育目標
(一)知識教學點
1.使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.
2.掌握平行四邊形的性質定理1、2.
3.并能運用這些知識進行有關的證明或計算.
(二)能力訓練點
1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉化思想.
2.通過推導平行四邊形的性質定理的過程,培養學生的推導、論證能力和邏輯思維能力.
(三)德育滲透點
通過要求學生書寫規范,培養學生科學嚴謹的學風.
(四)美育滲透點
通過學習,滲透幾何方法美和幾何語言美及圖形內在美和結構美
二、學法引導
閱讀、思考、講解、分析、轉化
三、重點·難點·疑點及解決辦法
1.教學重點:平行四邊形性質定理的應用
2.教學難點:正確理解兩條平行線間的距離的概念和運用性質定理2的推論;在計算或證明中綜合應用本節前一章的知識.
3.疑點及解決辦法:關于性質定理2的推論;兩點的距離,點到直線的距離,兩平行直線中間的距離的區別與聯系,注重對概念的教學,使學生深刻理解上述概念,搞清它們之間的關系;平行四邊形的高有關問題.
四、課時安排
2課時
五、教具學具準備
教具(做兩個全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具
六、師生互動活動設計
教師復習提問,學習思考口答;教師設疑引思,學生討論分析;師生共同總結結論,教師示范講解,學生達標練習
第一課時
七、教學步驟
【復習提問】
1.什么叫做四邊形?什么叫四邊形的一組對邊?
2.四邊形的兩組對邊在位置上有幾種可能?
(教師隨著學生回答畫出圖1)
圖1
【引入新課】
在四邊形中,我們常見的實用價值最大的就是平行四邊形,如汽車的防護鏈,無軌電車的擊電桿都是平行四邊形的形象,平行四邊形有什么性質呢?這是這節課研究的主要內容(寫出課題).
【講解新課】
1.平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形.
注意:一個四邊形必須具備有兩組對邊分別平行才是平行四邊形,反過來,平行四邊形就一定是有“兩組對邊分別平行”的一個四邊形.因此定義既是平行四邊形的一個判定方法(定義判定法)又是平行四邊形的一個性質.
2.平行四邊形的表示:平行四邊形用符號“
”表示,如圖1就是平行四邊形
,記作“
”.
align=middle>
圖1
3.平行四邊形的性質
講解平行四邊形性質前必須使學生明確平行四邊形從屬于四邊形,因此它具有四邊形的一切性質(共性),同時它又是特殊的四邊形,當然還有其特性(個性),下面介紹的性質就是其特性,這是一般四邊形所不具有的.
平行四邊形性質定理1:平行四邊形的對角相等.
平行四邊形性質定理2:平行四邊形對邊相等.
(教具用兩個全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個定理的方法.如圖2)
圖2如圖3
所以四邊形是平行四邊形,所以.由此得到
推論:夾在兩條平行線間的平行線段相等.
圖3
要注意:必須有兩個平行,即夾兩條平行線段的兩條直線平行,被夾的兩條線段平行,缺一不可,如圖4中的幾種情況都不可以推出圖4
4.平行線間的距離
從推論可以知道,如果兩條直線平行,那么從一條直線上所有各點到另一條直線的距離相等,如圖5.
我們把兩條平行線中一條直線上任意一點到另一條直線的距離,叫做平行線的距離.
圖5
注意:(1)兩相交直線無距離可言.
(2)連結兩點間的線段的長度叫兩點間的距離,從直線外一點到一條直線的垂線段的長,叫點到直線的距離.兩條平行線中一條直線上任意一點到另一條直線的距離,叫做這兩條平行線的距離,一定要注意這些概念之間的區別與聯系.
例1已知:如圖1,
初中數學教案案例模板篇10
相反數
一、學習目標
1了解相反數的概念。
2給一個數,能求出它的相反數。
3根據a的相反數是-a,能把多重符號化成單一符號。
二、教學過程
師:請同學們畫一條數軸,在數軸上找出表示+6和-6的點,看一看表示這兩個數的點有什么特點,這兩個數本身有什么特點。先獨立思考,然后在小組里交流。
生:人人動用手畫數軸,獨立思考后,在小組內進行交流。
師:深入了解各小組的交流情況,討論結束后,提問1、2人,幫助全班同學理清思考問題的思路。
師:請同學們閱讀課本,知道什么叫相反數,給出一個數能求出它的相反數。
生:閱讀課本第59頁,并完成練習一第(1)~(4)題。
師:提問檢查學生的學習情況,強調“0的相反數是0”也是相反數定義的`一部分。
師:請同學們先想一想,a可以表示一個什么數,a與-a有什么關系。然后閱讀課本第60頁,并完成剩余的練習題,由小組長負責檢查練習情況。
師:認真了解各小組的學習情況,特別是對簡化符號的題和學習困難的學生,要重點對待。
生:認真思考,閱讀課本,完成練習。小組長、教師對學習困難生及時進行輔導。
師:請同學們先小結一下本節課的學習內容。然后,看一看習題2.3中,哪些題你能不動筆說出結果,請在四人小組里互相說一說。(除A組第2題外都可以直接說出結果)
生:小結。完成習題1.3中的有關練習。
練習
1在下列各式中分別填上適當的符號,使等號左右兩端的數相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符號化成單一符號:
-[-(-0.3)]=____________;
-[-(+4)]=____________;
+[+(+5)]=____________;
-[+(-50)]=____________。
3根據a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的說法對不對?請舉列說明。
(1)一個有理數的相反數的相反數就是這個有理數本身。
(2)一個有理數的相反數一定比原來的有理數小。
(3)-a是一個負數。
作業
在數軸上記出2,-4.5,0各數與它們的相反數,并指出表示這些數的點離開原點的距離是多少。
初中數學教案案例模板篇11
教學目標
1、知識與技能
能應用所學的函數知識解決現實生活中的問題,會建構函數“模型”。
2、過程與方法
經歷探索一次函數的應用問題,發展抽象思維。
3、情感、態度與價值觀
培養變量與對應的思想,形成良好的函數觀點,體會一次函數的應用價值。
重、難點與關鍵
1、重點:一次函數的應用。
2、難點:一次函數的應用。
3、關鍵:從數形結合分析思路入手,提升應用思維。
教學方法
采用“講練結合”的教學方法,讓學生逐步地熟悉一次函數的.應用。
教學過程
一、范例點擊,應用所學
【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數關系式,并畫出函數圖象。
y=
【例6】A城有肥料200噸,B城有肥料300噸,現要把這些肥料全部運往C、D兩鄉。從A城往C、D兩鄉運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉運肥料的費用分別為每噸15元和24元,現C鄉需要肥料240噸,D鄉需要肥料260噸,怎樣調運總運費最少?
解:設總運費為y元,A城往運C鄉的肥料量為x噸,則運往D鄉的肥料量為(200—x)噸。B城運往C、D鄉的肥料量分別為(240—x)噸與(60+x)噸。y與x的關系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉0噸,運往D鄉200噸;從B城運往C鄉240噸,運往D鄉60噸,此時總運費最少,總運費最小值為10040元。
拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應怎樣調運?
二、隨堂練習,鞏固深化
課本P119練習。
三、課堂總結,發展潛能
由學生自我評價本節課的表現。
四、布置作業,專題突破
課本P120習題14.2第9,10,11題。
板書設計
1、一次函數的應用例:
初中數學教案案例模板篇12
教學設計思想:
本小節依次介紹了平方差公式和完全平方公式,并結合公式講授如何運用公式進行多項式的因式分解。第一課時的內容是用平方差公式對多項式進行因式分解,首先提出新問題:x2-4與y2-25怎樣進行因式分解,讓學生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發展學生的逆向思維和推理能力,然后讓學生獨立去做例題、練習中的題目,并對結果通過展示、解釋、相互點評,達到能較好的運用平方差公式進行因式分解的目的。第二課時利用完全平方公式進行多項式的因式分解是在學生已經學習了提取公因式法及利用平方差公式分解因式的基礎上進行的,因此在教學設計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發式的教學方法,引導學生積極思考問題,從中培養學生的思維品質。
教學目標
知識與技能:
會用平方差公式對多項式進行因式分解;
會用完全平方公式對多項式進行因式分解;
能夠綜合運用提公因式法、平方差公式、完全平方公式對多項式進行因式分解;
提高全面地觀察問題、分析問題和逆向思維的能力。
過程與方法:
經歷用公式法分解因式的探索過程,進一步體會這兩個公式在因式分解和整式乘法中的不同方向,加深對整式乘法和因式分解這兩個相反變形的認識,體會從正逆兩方面認識和研究事物的方法。
情感態度價值觀:
通過學習進一步理解數學知識間有著密切的聯系。
教學重點和難點
重點:①運用平方差公式分解因式;②運用完全平方式分解因式。
難點:①靈活運用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運用完全平方公式分解因式
關鍵:把握住因式分解的基本思路,觀察多項式的特征,靈活地運用換元和劃歸思想。
初中數學教案案例模板篇13
一、教師自我介紹。
1.靜聽上課鈴聲,養成良好預備習慣(教師提前1分鐘,面帶微笑走上講臺。)
師:親愛的小朋友們,再過一分鐘,我們就會聽到上課鈴聲了,讓我們靜靜地等待吧。(孩子們靜靜地傾聽。)
鈴聲響過,師:這就是上課鈴聲,多響亮呀,它告訴我們:上課啦,上課啦,小朋友們坐好啦!身子快挺直,小手快放好,眼睛看前方,小嘴不吵鬧。(教師示范,表揚做得好的孩子)
師:小朋友們可真聰明,一聽就懂,一學就會,坐得多端正,聽得多專心,對啦,鈴聲響起來,我們的心兒靜下來,笑容露出來,快樂的學習開始啦!
2.通過識字,進行教師的自我介紹。
師:小朋友,你們知道我是誰嗎?我是數學老師。(故作神秘)想不想知道我叫什么名字?我的名字里有三個字,我把它寫在黑板上。(一筆一劃寫上自己的名字)小朋友,這就是漢字,讀什么呢?不認識?沒關系,我只要給它注上拼音,你們就知道讀什么啦!(在名字上注上拼音)請幾個小朋友讀一讀。小朋友的拼音學得不錯呀!知道老師名字的小朋友舉手,都知道啦?真了不起!不過在我們中國,為了表示對長輩的尊重,我們不能直接喊長輩的名字,老師也是你們的這個長輩,你們平時應該怎么和我打招呼呢?(孫老師好!)真是個懂禮貌的好孩子!(師生互相打招呼,例如:展鵬鵬,你好!孫老師好!)
3.教師展示自己的特長,給學生留下好的印象。
師:孫老師和小朋友們一樣,平時也有很多愛好呢,請小朋友來猜猜看,老師喜歡什么?(教師根據自己的特點,畫一些簡單的符號。例如書(愛看書,說說自己看書的故事)音符(喜歡音樂)漂亮的字(愛好書法)
師:我還喜歡什么呢?對啦,孫老師最喜歡小朋友們!小朋友們,愿意和孫老師交朋友嗎?呀,我真是太高興啦,我多了那么多的朋友啦!那你們愿意跟著孫老師學本領嗎?好的,朋友們,從今天起,讓我們一起努力,好好學習,天天向上,把自己變得更棒!
二、熟悉校園,班級,激起學生成為小學生的自豪感。
1.歌曲引線,讓學生體驗成為一名小學生的自豪。
師:現在,讓我們來聽一首歌,會唱的小朋友可以跟著唱。小朋友們的歌聲里充滿了快樂,你們為什么會這么高興呢?是呀,我們現在已經從幼兒園畢業了,上小學啦,我們有一個新的稱呼,叫——小學生。開心嗎?老師祝賀你們!(很莊重很認真地)成為一名小學生,就會學到更多的知識,會寫字,會看書,會許多許多本領,多了不起!誰來神氣地說說這句話:我是小學生!(你來說,多自信的小學生!我真喜歡這位小學生!)一起說說。,
2.知道學校名稱、班級名稱以及所在位置。
師:小朋友,我們的學校叫什么名字呀?(出示學校圖片,教師講解:位置,功能)我們是幾年級幾班呢?我們的教室在哪兒?
3.填寫表格(拼音)。(反面印兒歌)
學校:奎屯市三小
姓名:
班級:一()
教室所在位置:南一樓
我的老師:孫老師
(請幾名小朋友上來讀讀自己填寫的內容)
三、上下課基本規則訓練。
1.學習《上下課》兒歌。
上課下課歌
上課鈴響,快進課堂。下課鈴響,不慌不忙。
坐姿端正,專心聽講。做好準備,再出課堂。
積極動腦,發言響亮。走路輕輕,入廁及時。
自覺做好,人人夸獎。游戲文明,爭做榜樣。
師:要成為一名合格的小學生,上下課應該怎么做呢?我們來學習一首兒歌。
2.解讀兒歌要求,細化上下課的規范。(注意時間安排,來不及可留待下節課再進行,切忌匆忙,每個規范要訓練到位,在進行下個規范的訓練)
下課鈴響,及時上廁所,課間不在走廊里追逐打鬧,做好下節課的準備工作,書本文具擺在什么位置,上課怎么站立和老師打招呼,舉手發言姿勢、下課和老師再見等方面的要求。
四、總結。
師:小結:小朋友們,我們是小學生啦,我們的學校又大又漂亮,有美麗的花壇,干凈的操場,寬敞的教室,還有可親的老師,可愛的小朋友,喜歡我們這個大家庭嗎?讓我們相親相愛,在這個大家庭里開心地學習、生活吧!
其他要注意訓練的要點(可選用,時間允許的話,可加入第一課時):
一、小朋友簡單自我介紹(讓孩子們互相認識,知道這是一個受歡迎的新集體。)
二、知道養成正確的讀寫姿勢才能保護視力,初步學會正確的讀寫姿勢,初步養成良好的讀寫習慣。(讀書看書姿勢,握筆姿勢,坐姿,站姿)
三、繼續進行坐姿訓練、聽課發言常規訓練、課前準備和下課時的常規訓練。
訓練要求:
1.坐姿要求:小手平方桌面(右手在上),雙腳平放地面,腰背挺直,眼睛看著黑板或老師。
2.聽課發言要求:聽課要專心,坐姿端正,不能教室里隨意走動,不能同桌或邊上的小朋友隨便講話,眼睛跟著老師轉。別的同學發言,要認真傾聽,如果有話要說,要先舉起右手,得到老師的同意,起身,向右或向左輕移一步,站到凳子旁邊,雙手自然垂肩,腰背挺直,發言要響亮。
3.課前準備和上課規范訓練要求:根據課表安排,拿出相對應學科的課本、作業本以及文具,按大的在下,小的在上的順序整齊地擺在課桌的左上角(或右上角),動作要輕。師生問好,學生站姿參考發言時站立要求,坐下立刻端正坐姿。
4.下課訓練要求:老師說下課,小朋友們再見,小朋友起立,說老師再見。然后輕輕收好課桌上的東西,把下節課要上課的課本文具輕輕擺好。輕輕走路,輕輕說話,及時入廁,安全游戲。
5.路隊訓練要求:安靜,快速,整齊,和前面小朋友對齊,不能走到隊伍外面,上下樓梯靠右行走,不能推擠。
初中數學教案案例模板篇14
說教學目標
一、知識與技能
1、了解全等形和全等三角形的概念,掌握全等三角形的性質。
2、能正確表示兩個全等三角形,能找出全等三角形的對應元素。
二、過程與方法
通過觀察、拼圖以及三角形的平移、旋轉和翻折等活動,來感知兩個三角形全等,以及全等三角形的性質。
三、情感態度與價值觀
通過全等形和全等三角形的學習,認識和熟悉生活中的全等圖形,認識生活和數學的關系,激發學生學習數學的興趣。
說教學重點
1、全等三角形的性質。
2、在通過觀察、實際操作來感知全等形和全等三角形的基礎上,形成理性認識,理解并掌握全等三角形的對應邊相等,對應角相等。
說教學難點
正確尋找全等三角形的對應元素
難點突破
通過拼圖、對三角形進行平移、旋轉、翻折等活動,讓學生在動手操作的過程中,感知全等三角形圖形變換中的對應元素的變化規律,以尋找全等三角形的對應點、對應邊、對應角。
說課前準備:
課件、三角形紙片
說教學過程
一、出示學習目標
1、知道什么是全等形、全等三角形及全等三角形的對應元素。
2、知道全等三角形的性質,能用符號正確地表示兩個三角形全等。
二、直觀感知,導入新課
教師演示一些全等的圖形的課件,讓學生直觀感知圖片并尋找每組圖片的特點。二、合作探究,學習新知
1.全等形
我們給這樣的圖形起個名稱----全等形。[板書:全等形]
教師讓學生們想生活中還有那些圖形是全等形.
2.全等三角形及相關對應元素的定義
教師用多媒體動態演示兩個能完全重合地三角形。定義全等三角形:能夠完全重合的兩個三角形,叫全等三角形。
[板書課題:12.1全等三角形]
2.全等三角形的對應元素及表示
把三角形平移、翻折、旋轉后,什么發生了變化,什么沒有變?
歸納:旋轉前后的兩個三角形,位置變化了,但形狀大小都沒有變,它們依然全等。
以多媒體上的圖形為例,全等三角形中的對應元素
(1)對應的頂點(三個)---重合的頂點
(2)對應邊(三條)---重合的邊
(3)對應角(三個)---重合的角
歸納:方法一---全等三角形對應角所對的邊是對應邊,兩個對應角所夾的&39;邊是對應邊;方法二:全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角。
另外:有公共邊的,公共邊一定是對應邊;有對頂角的,對頂角一定是對應角。
.用符號表示全等三角形
抽學生表示圖一、圖二、三的全等三角形。
3.全等三角形的性質
思考:全等三角形的對應邊、對應角有什么關系?為什么?
歸納:全等三角形的對應邊相等、對應角相等。
4.小組活動合作升華
學生分小組動手操作擺圖形
小組合作完成位置不同的三角形,寫出它們的對應邊,對應角。強調其他小組學生說的時候,自己一定要注意傾聽,能夠分辨出對錯來。
三、鞏固練習
四、教師用多媒體展示習題,學生做鞏固練習。
五、小結:本節課都學到了什么
六、作業:
必做題課本33頁習題第1題、2題.
選做題課本第34頁第6題。
初中數學教案案例模板篇15
一、素質教育目標
(一)知識教學點
1.理解有理數乘方的意義.
2.掌握有理數乘方的運算.
(二)能力訓練點
1.培養學生觀察、分析、比較、歸納、概括的能力.
2.滲透轉化思想.
(三)德育滲透點:培養學生勤思、認真和勇于探索的精神.
(四)美育滲透點
把記成,顯示了乘方符號的簡潔美.
二、學法引導
1.教學方法:引導探索法,嘗試指導,充分體現學生主體地位.
2.學生學法:探索的性質→練習鞏固
三、重點、難點、疑點及解決辦法
1.重點:運算.
2.難點:運算的符號法則.
3.疑點:①乘方和冪的區別.
②與的區別.
四、課時安排
1課時
五、教具學具準備
投影儀、自制膠片.
六、師生互動活動設計
教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.
七、教學步驟
(一)創設情境,導入 新課
師:在小學我們已經學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?
生:可以記作,讀作的四次方.
師:呢?
生:可以記作,讀作的五次方.
師:(為正整數)呢?
生:可以記作,讀作的次方.
師:很好!把個相乘,記作,既簡單又明確.
【教法說明】教師給學生創設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數學的發展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.
師:在小學對底數,我們只能取正數.進入中學以后我們學習了有理數,那么還可取哪些數呢?請舉例說明.
生:還可取負數和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.
非常好!對于中的,不僅可以取正數,還可以取0和負數,也就是說可以取任意有理數,這就是我們今天研究的課題:(板書).
【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據初一學生的認知水平,分層逐步說明可以取正數,可以取零,可以取負數,最后總結出可以取任意有理數.
(二)探索新知,講授新課
1.求個相同因數的積的運算,叫做乘方.
乘方的結果叫做冪,相同的因數叫做底數,相同的因數的個數叫做指數.一般地,在中,取任意有理數,取正整數.
注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.
鞏固練習(出示投影1)
(1)在中,底數是__________,指數是___________,讀作__________或讀作___________;
(2)在中,-2是__________,4是__________,讀作__________或讀作__________;
(3)在中,底數是_________,指數是__________,讀作__________;
(4)5,底數是___________,指數是_____________.
【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區別表示底數是-2,指數是4的冪;而表示底數是2,指數是4的冪的相反數.為后面的計算做鋪墊.通過第(4)小題指出一個數可以看作這個數本身的一次方,如5就是,指數1通常省略不寫.
師:到目前為止,對有理數業說,我們已經學過幾種運算?分別是什么?其運算結果叫什么?
學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.
生:到目前為止,已經學習過五種運算,它們是:
運算:加、減、乘、除、乘方;
運算結果:和、差、積、商、冪;
教師對學生的回答給予評價并鼓勵.
【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養學生歸納、總結的能力.
師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.
學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.
【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數的乘法運算來進行有理數乘方的運算.向學生滲透轉化的思想.
2.練習:(出示投影2)
計算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.
師:請同學們觀察、分析、比較這三組題中,每組題中底數、指數和冪之間有什么聯系?
先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.
生:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數,零的任何次冪都是零.
師:請同學們繼續觀察與,與中,底數、指數和冪之間有何聯系?你能得出什么結論呢?
學生活動:學生積極思考,同桌之間、前后桌之間互相討論.
生:互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等.
師:請同學思考一個問題,任何一個數的偶次冪是什么數?
生:任何一個數的偶次冪是非負數.
師:你能把上述結論用數學符號表示嗎?
生:(1)當時,(為正整數);
(2)當
(3)當時,(為正整數);
(4)(為正整數);
(為正整數);
(為正整數,為有理數).
【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創造發揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.
初中數學教案案例模板篇16
一、課題2.4有理數的減法
二、教學目標
1.使學生掌握有理數減法法則并熟練地進行有理數減法運算;
2.培養學生觀察、分析、歸納及運算能力.
三、教學重點
有理數減法法則
四、教學難點
有理數減法法則
五、教學用具
三角尺、小黑板、小卡片
六、課時安排
1課時
七、教學過程
(一)、從學生原有認知結構提出問題
1.計算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化簡下列各式符號:
(1)-(-6);(2)-(+8);(3)+(-7);
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3題中,已知一個加數與和,求另一個加數,在小學里就是減法運算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數的減法,減法是加法的逆運算.
(二)、師生共同研究有理數減法法則
問題1(1)(+10)-(+3)=______;
(2)(+10)+(-3)=______.
教師引導學生發現:兩式的結果相同,(更多內容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).
教師啟發學生思考:減法可以轉化成加法運算.但是,這是否具有一般性?問題2(1)(+10)-(-3)=______;
(2)(+10)+(+3)=______.
對于(1),根據減法意義,這就是要求一個數,使它與-3相加等于+10,這個數是多少?
(2)的結果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教師引導學生歸納出有理數減法法則:
減去一個數,等于加上這個數的.相反數.
教師強調運用此法則時注意“兩變”:一是減法變為加法;二是減數變為其相反數.減數變號(減法============加法)
(三)、運用舉例變式練習
例1計算:
(1)(-3)-(-5);(2)0-7.
例2計算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通過計算上面一組有理數減法算式,引導學生發現:
在小學里學習的減法,差總是小于被減數,在有理數減法中,差不一定小于被減數了,只要減去一個負數,其差就大于被減數.
例3世界上最高的山峰是珠穆朗瑪峰,其海拔高度大約為是8848米,吐魯番盆地的海拔高度大約是-155米,兩處高度相差多少米?
閱讀課本63頁例3
(四)、小結
1.教師指導學生閱讀教材后強調指出:
由于把減數變為它的相反數,從而減法轉化為加法.有理數的加法和減法,當引進負數后就可以統一用加法來解決.
2.不論減數是正數、負數或是零,都符合有理數減法法則.在使用法則時,注意被減數是永不變的.
(五)、課堂練習
1.計算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
2.計算:
(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;
(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.
3.計算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;
(4)(-5.9)-(-6.1);
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理數減法解下列問題
4.世界最高峰是珠穆朗瑪峰,海拔高度是8848m,陸上最低處是位于亞洲西部的死海湖,湖面海拔高度是-392m.兩處高度相差多少?
八、布置課后作業:
課本習題2.6知識技能的2、3、4和問題解決1
九、板書設計
2.5有理數的減法
(一)知識回顧(三)例題解析(五)課堂小結
例1、例2、例3
(二)觀察發現(四)課堂練習練習設計
十、課后反思
初中數學教案案例模板篇17
一、教學目標
1.掌握相似三角形的性質定理2、3.
2.學生掌握綜合運用相似三角形的判定定理和性質定理2、3來解決問題.
3.進一步培養學生類比的教學思想chayi5.com.
4.通過相似性質的學習,感受圖形和語言的和諧美
二、教法引導
先學后教,達標導學
三、重點及難點
1.教學重點:是性質定理的應用.
2.教學難點:是相似三角形的判定與性質等有關知識的綜合運用.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具.
六、教學步驟
[復習提問]
敘述相似三角形的性質定理1.
[講解新課]
讓學生類比“全等三角形的周長相等”,得出性質定理2.
性質定理2:相似三角形周長的比等于相似比.
同樣,讓學生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學生作出的這種判斷暫時不作否定,待證明后再強調是“相似比的平方”,以加深學生的印象.
性質定理3:相似三角形面積的比,等于相似比的平方.
注:(1)在應用性質定理3時要注意由相似比求面積比要平方,這一點學生容易掌握,但反過來,由面積比求相似比要開方,學生往往掌握不好,教學時可增加一些這方面的練習.
(2)在掌握相似三角形性質時,一定要注意相似前提,如:兩個三角形周長比是,它們的面積之經不一定是,因為沒有明確指出這兩個三角形是否相似,以此教育學生要認真審題.
例1已知如圖,∽,它們的周長分別是60cm和72cm,且AB=15cm,,求BC、AB、、.
此題學生一般不會感到有困難.
例2有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學生不易掌握,教師可提供另外一種解法.
解:設原地塊為,地塊在甲圖上為,在乙圖上為
學生在運用掌握了計算時,容易出現的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如:,而
[小結]
1.本節學習了相似三角形的性質定理2和定理3.
2.重點學習了兩個性質定理的應用及注意的問題.
七、布置作業
教材P247中A組4、5、7.
八、板書設計
數學教案-相似三角形的性質