七年級上冊的數學教案
教案是教師為每節課制定的教學方案,其中包括每節課的重點、難點、教學內容、教學方法和教學目標等內容。這里分享一些七年級上冊的數學教案下載,供大家寫七年級上冊的數學教案參考。
七年級上冊的數學教案篇1
課的開始,由于小學階段學生已經接觸過了平行線,我從觀察街道上的十字路口,展示兩條路相交的情景,引入課題,從而增強學生學習活動的親切感,同時也把學生推向主體學習地位。這為引出本課的學習內容做了鋪墊。
在課堂中,讓學生回憶角的知識,讓學生從角的頂點和兩邊入手去尋找對頂角的特征,讓學生有明確的方向向教學目標靠攏。在尋找對頂角的練習中明確指出兩條相交線就可以組成兩組對頂角,這為最后的合作探究奠定了根底。在探究對頂角的性質的時候,引導學生從已學的知識推倒對頂角相等,這符合學生的思維學習過程。在講解例2的過程中,讓學生思考并讓學生分析解題的思路,并將學生的解題思路和正確答案進展結合并板演,這為習題的解題過程書寫提供了格式。在合作探究時,先告知學生在尋找對頂角組數時應先明確兩條相交線就可以組成兩組對頂角,這與前面前后照應,最終總結出尋找對頂角的方法。最后學生總結這節課的收獲,使學生回憶一節課的重點和難點,起到強調穩固作用。
此外本節課還存在諸多的缺乏之處:
1.在提出問題的時候,學生的思考時間較少,只有程度較好的學生思考出來,大局部學生都還在思考中。
2.欠缺對“學困生”的關注,沒能用更好的語言激發他們。
3.沒能讓每位學生都有足夠的時間發表自己的觀點。
4.沒能進展很好的知識延伸和拓展。
5.合作探究的題目有一定的難度,大多數學生還是沒能研究出結果。
七年級上冊的數學教案篇2
教學目標
1、知識:認識簡單的空間幾何棱柱、圓柱、圓錐、球等,掌握其中的相同之處和不同之處
2、能力:通過比較,學會觀察物體間的特征,體會幾何體間的聯系和區別,并能根據幾何體的特征,對其進行簡單分類。
3、情感:有意識地引導學生積極參與到數學活動過程中,培養與他人合作交流的能力。
教學重點:認識一些基本的&39;幾何體,并能描述這些幾何體的特征
教學難點:描述幾何體的特征,對幾何體進行分類。
教學過程:
一、設疑自探
1.創設情景,導入新課
在小學的時候學習了那些平面圖形和幾何圖形,在生活你還見到那些幾何體?
2.學生設疑
讓學生自己先思考再提問
3.教師整理并出示自探題目
①生活常見的`幾何體有那些?
②這些幾何體有什么特征
③圓柱體與棱柱體有什么的相同之處和不同之處
④圓柱體與圓錐體有什么的相同之處和不同之處
⑤棱柱的分類
⑥幾何體的分類
4.學生自探(并有簡明的自學方法指導)
舉例說說生活中的物體那些類似圓柱、圓錐、正方體、長方體、棱柱、球體?
說說它們的區別
二、解疑合探
1.針對圓柱、圓錐、正方體、長方體、棱柱、球體特征的認識不徹底進行再探
2、對這些類似圓柱、圓錐、正方體、長方體、棱柱、球體的分類
2.活動原則:學困生回答,中等生補充、優等生評價,教師引領點撥提升總結。
三、質疑再探:
說說你還有什么疑惑或問題(由學生或老師來解答所提出的問題)
四、運用拓展:
1.引導學生自編習題。
請結合本節所學的知識舉例說明生活簡單基本的幾何體,并說說其特征
2.教師出示運用拓展題。
(要根據教材內容盡可能要試題類型全面且有代表性)
3.課堂小結
4.作業布置
五、教后反思
七年級上冊的數學教案篇3
師:在小學里,同學們已經學過數的加、減、乘、除四則運算。這些數是正整數、正分數、和零,也就是說,這些運算是在非負有理數范圍內進行的。自從引進負數后,數的范圍就擴大到整個有理數。那么,在有理數范圍內,怎樣進行四則運算呢?今天,我們來探索有理數的加法運算。(教師板書課題:有理數的加法)
請同學們思考一下,兩個有理數進行加法運算時,這兩個加數的符號可能有哪些情況。
生1:加數都是正數或都是負數。(教師板書:同號兩數相加)加數一正一負(教師板書:異號兩數相加)
師:還有其他情況嗎?
生2:正數與零,負數與零,或者兩個都是零
師:同學們回答得很好。現在讓我們一起來看一個具體問題:某人從一點出發,經過下面兩次運動,結果的方向怎樣?離開出發點的距離是多少?①先向東走了5米,再向東走3米,結果怎樣?
生3:向東走了8米
師:如果規定向東為正,向西為負,同學們能不能用一個數學式子來表示?生4:表示為(+5)+(+3)=+8(教師板書)師:我們可以畫出示意圖。(教師用投影儀顯示圖1)
②先向西走了5米,再向西走了3米,結果如何?
生5:向西走了8米。可以表示為:(-5)+(-3)=-8[教師板書]
(教師用投影儀顯示圖2)
③向東走了5米,再向西走了3米,結果呢?
生6:向東走了2米。可以表示為:(+5)+(-3)=+2[教師板
(教師用投影儀顯示圖3)
④先向西走了5米,再向東走了3米,結果呢?
生7:向西走了2米。可以表示為:(-5)+(+3)=-2(教師板)(教師用投影儀顯示圖4)
⑤先向東走5米,再向西走5米,結果呢?
生8:回到原地位置。可以表示為:(+5)+(-5)=0(教師板書)(教師用投影儀顯示圖5)
⑥先向西走5米,再向東走5米,結果呢?
生9:仍回到原地位置。可以表示為:(-5)+(+5)=0[教師板書]
(教師用投影儀顯示圖6)
師:同學們開動腦筋,完成上面這組問題完成得非常好,我非常高興,請同學們獨立完成下面一組有理數加法的具體問題,用數學式子表示出來。(教師用投影儀顯示下面內容):
從河岸現在水位線開始,規定上升為正,下降為負:
①上升8cm,再上升6cm,結果怎樣?②下降8cm,再下降6cm,結果怎樣?
③上升6cm,再下降8cm,結果怎樣?④下降6cm,再上升8cm,結果怎
⑤上升8cm,再下降8cm,結果怎樣?⑥下降8cm,再上升0cm,結果怎樣?
師:下面同學們分組討論,互相訂正。
教師公布正確答案:
①上升14cm。[教師板書(+8)+(+6)=+14]
②下降14cm。[教師板書(-8)+(-6)=-14]
③下降2cm。[教師板書(+6)+(-8)=-2]
④上升2cm。[教師板書(-6)+(+8)=+2]
⑤回到原水位線。[教師板書(+8)+(-8)=0]
⑥在原水位下線下8cm。[教師板書(-8)+0=-8]
師:通過以上兩組題目,從兩個有理數相加的過程中你發現了什么?請同學們發表演自己的觀點,與本組同學交流。
小組1:我們這一小組同學發現了正數加正數結果是正數,負數加負數結果是負數,也就是說:同號兩數相加,符號不變。
師:其他小組還有沒有新的發現什么?
小組2:我們發現符號不同的兩個有理數相加,結果的符號與最前面加數的符號一樣。
師:這一小組的看法是否正確呢?
小組3:不正確。因為(+6)+(-8)=-2,(-6)+(+8)=+2,結果和符號與第一個加數的符號不一樣。應改為:符號不同的兩個有理數相加,結果的符號決定于加數中較大的數的符號。
小組4:這句話也不對,如(+3)+(-5)=-2中,和的符號是負的,但+3比-5大,應改為:和的符號與絕對值大的加數符號一樣。師:還有沒有不同意見?
小組5:我們這一小組有不同意見。符號不同的兩個數相加還有一種可能是相反數的情況,結果為0與每個的數的符號都不一樣。
師:觀察仔細,很好。
師:剛才同學們只是發現了兩個有理數相加,結果的符號問題,結果除了
符號部分外,另一部分稱為結果的什么?
眾生:結果的絕對值
師:結果的絕對值與加數絕對值又有何關系呢?
小組5:同號兩數相加和的絕對值等于加數絕對值的和,異號兩數相加和的絕對值等于較大絕對值減去較小絕對值。
師:請同學歸納,總結出有理數的加法規律。
小組6:同號兩數相加,符號不變,并把絕對值相加;異號兩數相加取絕對值較大加數的符號,并用較大的絕對值減去較小的絕對值。
小組7:不對,異號兩數相加應分兩種情況。⑴絕對值不等的異號兩數相加;⑵絕對值相等的異號兩數相加。
師:很好!同學們已經感受到兩個有理數相加的情況與小學加法要復雜一些,是否還有沒有考慮到的情況呢?
小組8:有,一個數同0相加,仍是這個數。
師:全班同學共同說出有理數的加法法則。
教(板書):有理數加法法則:
①同號兩數相加,取加數的符號,并把絕對值相加;
②異號兩數相加,如果絕對值相等和為0;如果絕對值不等,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;
③一個數同0相加,仍是這個數。
(點評:學生學習知識是一個動態的過程。學生認知的效果,完全取決于學生是否以積極的心態參與認知活動。因此本節課在教學設計上有如下閃光點:
1、通過回顧已具備的部分知識與技能,讓學生產生一個暫時成功感和滿足感,達到一個暫時的心理平衡。
2、以提問的形式展現新矛盾、新問題,挑起學生引起心理的不平衡。旨在誘發學生好強、好勝的天性,將學生的注意力導向下一個環節。
3、再次以提問的形式,滲透分類的思想,將學生的思維導向分類探索的境地。旨在讓學生的思維能圓潤地過度到探索新知情境之中。
4、分類展示生活情境,放手讓全體學生感受并探索,從而構建加法法則。)
七年級上冊的數學教案篇4
一、學生起點分析
八年級學生已經具備一定的觀察、歸納、探索和推理的能力.在小學,他們已學習了一些幾何圖形面積的計算方法(包括割補法),但運用面積法和割補思想解決問題的意識和能力還遠遠不夠.部分學生聽說過“勾三股四弦五”,但并沒有真正認識什么是“勾股定理”.此外,學生普遍學習積極性較高,探究意識較強,課堂活動參與較主動,但合作交流能力和探究能力有待加強.
二、教學任務分析
本節課是義務教育課程標準實驗教科書北師大版八年級(上)第一章《勾股定理》第一節第1課時.勾股定理揭示了直角三角形三邊之間的一種美妙關系,將形與數密切聯系起來,在數學的發展和現實世界中有著廣泛的作用.本節是直角三角形相關知識的延續,同時也是學生認識無理數的基礎,充分體現了數學知識承前啟后的緊密相關性、連續性.此外,歷勾股定理的發現反映了人類杰出的智慧,其中蘊涵著豐富的科學與人文價值.
為此本節課的教學目標是:
1.用數格子(或割、補、拼等)的辦法體驗勾股定理的探索過程并理解勾股定理反映的直角三角形的三邊之間的數量關系,會初步運用勾股定理進行簡單的計算和實際運用.
2.讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法.
3.進一步發展學生的說理和簡單推理的意識及能力;進一步體會數學與現實生活的緊密聯系.
4.在探索勾股定理的過程中,體驗獲得成功的快樂;通過介紹勾股定理在中國古代的研究,激發學生熱愛祖國,熱愛祖國悠久文化歷史,激勵學生發奮學習.
三、教學過程設計
本節課設計了五個教學環節:第一環節:創設情境,引入新課;第二環節:探索發現勾股定理;第三環節:勾股定理的簡單應用;第四環節:課堂小結;第五環節:布置作業.
第一環節:創設情境,引入新課
內容:2002年世界數學家大會在我國北京召開,投影顯示本屆世界數學家大會的會標:
會標中央的圖案是一個與“勾股定理”有關的圖形,數學家曾建議用“勾股定理”的圖來作為與“外星人”聯系的信號.今天我們就來一同探索勾股定理.(板書課題)
意圖:緊扣課題,自然引入,同時滲透愛國主義教育.
效果:激發起學生的求知欲和愛國熱情.
第二環節:探索發現勾股定理
1.探究活動一
內容:投影顯示如下地板磚示意圖,引導學生從面積角度觀察圖形:
問:你能發現各圖中三個正方形的面積之間有何關系嗎?
學生通過觀察,歸納發現:
結論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積.
意圖:從觀察實際生活中常見的地板磚入手,讓學生感受到數學就在我們身邊.通過對特殊情形的探究得到結論1,為探究活動二作鋪墊.
效果:1.探究活動一讓學生獨立觀察,自主探究,培養獨立思考的習慣和能力;2.通過探索發現,讓學生得到成功體驗,激發進一步探究的熱情和愿望.
2.探究活動二
內容:由結論1我們自然產生聯想:一般的直角三角形是否也具有該性質呢?
(1)觀察下面兩幅圖:
(2)填表:
A的面積
(單位面積)B的面積
(單位面積)C的面積
(單位面積)
左圖
右圖
(3)你是怎樣得到正方形C的面積的?與同伴交流.(學生可能會做出多種方法,教師應給予充分肯定.)
學生的方法可能有:
方法一:
如圖1,將正方形C分割為四個全等的直角三角形和一個小正方形,.
方法二:
如圖2,在正方形C外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積,.
方法三:
如圖3,正方形C中除去中間5個小正方形外,將周圍部分適當拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法,.
(4)分析填表的數據,你發現了什么?
學生通過分析數據,歸納出:
結論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積.
意圖:探究活動二意在讓學生通過觀察、計算、探討、歸納進一步發現一般直角三角形的性質.由于正方形C的面積計算是一個難點,為此設計了一個交流環節.
效果:學生通過充分討論探究,在突破正方形C的面積計算這一難點后得出結論2.
3.議一議
內容:(1)你能用直角三角形的邊長,,來表示上圖中正方形的面積嗎?
(2)你能發現直角三角形三邊長度之間存在什么關系嗎?
(3)分別以5厘米、12厘米為直角邊作出一個直角三角形,并測量斜邊的長度.2中發現的規律對這個三角形仍然成立嗎?
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.如果用,,分別表示直角三角形的兩直角邊和斜邊,那么.
數學小史:勾股定理是我國最早發現的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名.(在西方文獻中又稱為畢達哥拉斯定理)
意圖:議一議意在讓學生在結論2的基礎上,進一步發現直角三角形三邊關系,得到勾股定理.
效果:1.讓學生歸納表述結論,可培養學生的抽象概括能力及語言表達能力;2.通過作圖培養學生的動手實踐能力.
第三環節:勾股定理的簡單應用
內容:
例題如圖所示,一棵大樹在一次強烈臺風中于離地面10m處折斷倒下,樹頂落在離樹根24m處.大樹在折斷之前高多少?
(教師板演解題過程)
練習:
1.基礎鞏固練習:
求下列圖形中未知正方形的面積或未知邊的長度(口答):
2.生活中的應用:
小明媽媽買了一部29in(74cm)的電視機.小明量了電視機的屏幕后,發現屏幕只有58cm長和46cm寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?你能解釋這是為什么嗎?
意圖:練習第1題是勾股定理的直接運用,意在鞏固基礎知識.
效果:例題和練習第2題是實際應用問題,體現了數學來源于生活,又服務于生活,意在培養學生“用數學”的意識.運用數學知識解決實際問題是數學教學的重要內容.
第四環節:課堂小結
內容:
教師提問:
1.這一節課我們一起學習了哪些知識和思想方法?
2.對這些內容你有什么體會?與同伴進行交流.
在學生自由發言的基礎上,師生共同總結:
1.知識:勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.如果用,,分別表示直角三角形的兩直角邊和斜邊,那么.
2.方法:(1)觀察—探索—猜想—驗證—歸納—應用;
(2)“割、補、拼、接”法.
3.思想:(1)特殊—一般—特殊;
(2)數形結合思想.
意圖:鼓勵學生積極大膽發言,可增進師生、生生之間的交流、互動.
效果:通過暢談收獲和體會,意在培養學生口頭表達和交流的能力,增強不斷反思總結的意識.
第五環節:布置作業
內容:布置作業:1.教科書習題1.1.
2.觀察下圖,探究圖中三角形的三邊長是否滿足?
七年級上冊的數學教案篇5
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的喜悅,保持學好數學的`信心。
教學重點:
掌握有理數的兩種分類方法
教學難點:
給定的數字將被填入它所屬的集合中
教學方法:
問題導向法
學習方法:
自主探究法
教學過程:
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
1、有以下數字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
(2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
七年級上冊的數學教案篇6
最近,我在初一(4)班上了一節數學公開課,課題是《3.4實際問題與二元一次方程組》第二課時“銷售中的盈虧”,本節課是探究課,在教學中我采用小組合作交流探究的教學方式,在老師的時事點評和引導下,讓學生自己動手,動口,動腦,計算,歸納銷售中的常用公式,力求體現自主,合作,探究式學習,讓學生在“輕松,和諧”的課堂中高效完成本節學習任務。本節課我的教學過程主要分六個環節:第一,設計情境,激發學生學習興趣,引入本節課課題;第二,嘗試練習,熟悉公式;第三,探究銷售中的盈虧問題;第四,小組展示,解決探究問題;第五,鞏固練習,提升能力;第六,歸納總結銷售問題中常見的四個量之間的關系提煉解決問題的方法。
反思本節課的教學,成功之處有:
1.設計情境,引入課題,體現教學來源于生活有服務于生活的理念,“漢濱初中對面的電腦城中銷售一種路由器,先將進價提高20%,后再降20%出售,賣96元一臺,問商家是盈是虧?”通過本問題,起到兩個作用,一是引入課題,二是看待問題的方式不能只看表面而做出解答,必須用數量關系進行計算在做出判斷。
2.精選練習,達到讓學生熟悉公式的目的。
3.化解探究問題中的難點,把問題細化為6個小問題,便于小組分工合作,及時完成任務。
4.采用小組合作學習,充分展示學生探究問題的全過程。
5.在教學中能激勵性的語言去鼓勵學生大膽發言和展示,讓學生在比較輕松和諧的課堂氛圍中完成學習任務。
回顧本節課,我覺得在一些教學設計和教學過程中還存在著以下不足之處:
1.不能正確的把握各個環節的時間,為達到預期的學習效果。學生的語言表達能力和概括能力也有待進一步的提高。
2.在教學中未注重學生思維多樣性的培養。我總擔心學生說錯,一開始就讓學生沿著我預先想好的方向去思考,控制了學生的思維發展。
3.分層,分題組布置或推薦作業方面做的很不到位。
4.給學生思考問題的時間不充分,很急躁。
5.學生的參與度還有待進一步提高。
教師只有把學習的主動權交給學生,把思維的過程還給學生,使問題在分組討論、合作交流中得以共同解決,才能把自主、合作、探究的新型學習方式落到實處,才能還課堂以本來的面目,學生是學習的主體,是課的堂的主體。
七年級上冊的數學教案篇7
學習目標
1、了解負數是從實際需要中產生的;
2、能判斷一個數是正數還是負數,理解數0表示的量的意義;
3、會用正負數表示實際問題中具有相反意義的量.
重點難點
重點:正、負數的概念,具有相反意義的量
難點:理解負數的概念和數0表示的量的意義
教學流程
師生活動時間復備標注
一、導入新課
我先向同學們做個自我介紹,我姓,大家可以叫我老師,身高米,體重千克,今年歲,教齡是年齡的,我將和同學們一起度過三年的初中學習生活.
老師剛才的介紹中出現了一些數,它們是些什么數呢?
[投影1~3:圖1.1-1]人們由記數、排序,產生了數1,2,3……等整數;為了表示“沒有”、“空位”引進了數0;測量和分配有時不能得到整數的結果,為此產生了分數和小數.所以,數產生于人們實際生產和生活的需要.
在生活中,僅有整數和分數夠用了嗎?
二、新授
1、自學章前圖、第2頁,回答下列問題
數-3,3,2,-2,0,1.8%,-2.7%,這些數中,哪些數與以前學習的數不同?
什么是正數,什么是負數?
歸納小結:像3、2、2.7%這樣大于零的數叫做正數,像-3、-2、-2.7%這樣在正數前面加上負號“-”的數叫做負數.根據需要,有時在正數前面也加上“+”(正)號,例如,+2、+0.5、+1/3,…,就是2、0.5、1/3,….
這樣,一個數就由兩部分組成,數前面的“+”、“-”號叫做它的符號,后面的部分叫做這個數的絕對值.
如數-3.2的符號是“一”號,絕對值是3.2,數5的符號是“+”號,絕對值是5.
2、自學第23頁,回答下列問題
大于零的數叫做正數,在正數前面加上負號“-”的數叫做負數,那么0是什么數呢?
0有什么意義?
歸納小結:數0既不是正數,也不是負數,它是正數和負數的分界.
0的意義已不僅僅是表示“沒有”,它還可以表示一個確定的量.
3、用正負數表示具有相反意義的量:自學課本34頁
有哪些相反意義的量?
請舉出你所知道的相反意義的量?
“相反意義的量”有什么特征?
歸納小結:一是意義相反,二是有數量,而且是同類量.
完成3頁練習
4、例題
自學例題,完成歸納。尋找問題。
完成4頁練習
三、課堂達標練習
課本第5頁練習1、2、3、4、7、8.
四、課堂小結
1、到目前為止,我們學習的數有哪幾種?
2、什么是正數、負數?零僅僅表示“沒有”嗎?
3、正數和負數起源于表示兩種相反意義的量,后來正數和負數在許多方面被廣泛地應用.明確目標
七年級上冊的數學教案篇8
一、課題名稱:
3.3解一元一次方程(二)——去括號與去分母
二、教學目的和要求:
1、知識目標
(1)通過對比運用算術和列方程兩種方法解決實際問題的過程,使學生體會到列方程解應用題更簡潔明了,省時省力;
(2)掌握去括號解一元一次方程的方法,能熟練求解一元一次方程(數字系數),并判別解的合理性。
2、能力目標
(1)通過學生觀察、獨立思考等過程,培養學生歸納、慨括的能力;
(2)進一步讓學生感受到并嘗試尋找不同的解決問題的方法。
3、情感目標
(1)激發學生濃厚的學習興趣,使學生有獨立思考、勇于創新的精神,養成按客觀規律辦事的良好習慣;
(2)培養學生嚴謹的思維品質;
(3)通過學生間的相互交流、溝通,培養他們的協作意識。
三、教學重難點:
重點:去分母解方程。
難點:去分母時,不含分母的項會漏乘公分母,及沒有對分子加括號。
四、教學方法與手段:
運用引導發現法,引進競爭機制,調動課堂氣氛
五、教學過程:
1、創設情境,提出問題
問題1:我手中有6,x,30三張卡片,請同學們用他們編個一元一次方程,比一比看誰編的又快有對。
學生思考,根據自己對一元一次方程的理解程度自由編題。
問題2:解方程5(x-2)=8
解:5x=8+2,x=2,看一下這位同學的解法對嗎?相信學完本節內容后,就知道其中的奧秘。
問題3:某工廠加強節能措施,去年下半年與上半年相比,月平均用電減少2000度,全年用電15萬度,這個工廠去年上半年每月平均用電多少度?
2、探索新知
(1)情境解決
問題1:設上半年每月平均用電x度,則下半年每月平均用電____度;上半年共用電____度,下半年共有電_____度。
問題2:教室引導學生尋找相等關系,列方程。
根據全年用電15萬度,列方程,得6x+6(x-2000)=150000.
問題3:怎樣使這個方程向x=a的形式轉化呢?
6x+6(x-2000)=150000
↓去括號
6x+6x-12000=150000
↓移項
6x+6x=150000+12000
↓合并同類項
12x=162000
↓系數化為1
x=13500
問題4:本題還有其他列方程的方法嗎?
用其他方法列出的方程應怎樣解?
設下半年每月平均用電x度,則6x+6(x+2000)=150000.
(學生自己進行解決)
歸納結論:方程中有帶括號的式子時,根據乘法分配率和去括號法則化簡。(見“+”不變,見“—”全變)
去括號時要注意:
(1)不要漏乘括號內的任何一項;
(2)若括號前面是“—”號,記住去括號后括號內各項都變號。
(2)解一元一次方程——去括號
例題、解方程:3x—7(x—1)=3—2(x+3)。
解:去括號,得3x—7x+7=3—2x—6
移項,得3x—7x+2x=3—6—7
合并同類項,得—2x=—10
系數化為1,得x=5
3、變式訓練,熟練技能
(1)解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
(2)3(2-3x)-3[3(2x-3)+3]=5;
(3)2(x+1)+3(x+2)-3=-4(x+3).
(2)學校團委組織65名團員為學校建花壇搬磚,初一同學每人搬6塊,其他年級同學每人搬8塊,總共搬了400塊,問初一同學有多少人參加了搬磚?
(3)學校田徑隊的小剛在400米跑測試時,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度沖刺到達終點,成績為1分零5秒,問小剛在沖刺以前跑了多少時間?
4、總結反思,情意發展
(1)本節課你學習了什么?
(2)本節課你有哪些收獲?
(3)通過今天的學習,你想進一步探究的問題是什么?
可以歸納為如下幾點:
①本節主要學習用去括號的方法解一元一次方程。
②主要用到的思想方法是轉化思想。
③注意的問題:括號前是“—”號的,去括號時,括號內的各項要改變符號,乘數與括號內多項式相乘,乘數應乘遍括號內的各項;在實際問題中,要會找等量關系。
5、布置作業
(1)必做題:課本第98頁習題3.3第
1、2題。
(2)選做題:
①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。
②杭州新西湖建成后,某班40名同學劃船游湖,一共租了8條小船,其中有可坐4人的小船和可坐6人的小船,40名同學剛好坐滿8條小船,問這兩種小船各租了幾條?
六、課后小結:
本節課突出數學的應用意識。教師首先用學生感興趣的游戲和實際問題引入課題,然后逐步給出解答。在各環節的安排上都設計成一個個的問題,使學生能圍繞問題展開
思考、討論,進行學習。
強調學生主體意識的體現,在設計中,教師始終把學生放在主體的地位,讓學生通過嘗試得到解決,歸納出去括號解方程的特點,讓學生通過合作與交流,得出問題的不同解答方法。
從設計上體現學生思維的層次性。教師首先引導學生嘗試列出含未知數的式子,尋找相等關系列出方程。
七年級上冊的數學教案篇9
通過上節課學習后,學生已經掌握了用去括號、移項、合并同類項、把系數化為1這四個步驟解一元一次方程,接下來這一節課,我們要重點討論是:
(1)解方程中的“去分母”。
(2)根據實際問題列方程。這樣我們就掌握了解一元一次方程一般都采用的五步變形方法。
由一道的求未知數的問題,得到方程,這個方程的特點就是有些系數是分數,這時學生紛紛用合并同類項,把系數化為1的變形方法來解,但在合并同類項時幾個分數的求和,有相當一部分學生會感到困難且容易出錯,再看方程怎樣解呢?學生困惑了,不知從何處下手了,此時,需要尋求一種新的變形方法來解它,求知的欲望出來了,想到了去分母,就是化去分母,把分數系數化為整數,使解方程中的計算方便些。
在解方程中去分母時,我們發現存在這樣的一些問題:
(1)部分學生不會找各分母的最小公倍數,這點要適當指導。
(2)用各分母的最小公倍數乘以方程兩邊的項時,漏乘不含分母的項。
(3)當減式中分子是多項式且分母恰好為各分母的最小公倍數時,去分母后,分子沒有作為一個整體加上括號,容易錯符號。如解方程方程兩邊都乘以2后,得到2x-x+2=2,其中x+2沒有加括號,弄錯了符號。
七年級上冊的數學教案篇10
教學目標:
1、知識與技能:理解有理數加法的運算律,能熟練地運用運算律簡化有理數加法的運算,能靈活運用有理數的加法解決簡單實際問題。
2、過程與方法:經過有理數加法運算律的探索過程,了解加法的運算律,能用運算律簡化運算。
重點、難點:
1、重點:運算律的理解及合理、靈活的運用。
2、難點:合理運用運算律。
教學過程:
一、創設情景,導入新課
1、敘述有理數的加法法則。
2、有理數加法與小學里學過的數的加法有什么區別和聯系?
答:進行有理數加法運算,先要根據具體情況正確地選用法則,確定和的符號,這與小學里學過的數的加法是不同的;而計算和的絕對值,用的是小學里學過的加法或減法運算。
二、合作交流,解讀探究
1、計算下列各題,并說明是根據哪一條運算法則?
(1)(-9.18)+6.18;(2)6.18+(-9.18);(3)(-2.37)+(-4.63)
2、計算下列各題:
(1)+(-4);(2)8+;
(3)+(-11);(4)(-7)+;
(5)+(+27);(6)(-22)+.
通過上面練習,引導學生得出:
交換律兩個有理數相加,交換加數的位置,和不變。
用代數式表示上面一段話:
a+b=b+a
運算律式子中的字母a,b表示任意的一個有理數,可以是正數,也可以是負數或者零.在同一個式子中,同一個字母表示同一個數。
結合律三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變.
用代數式表示上面一段話:
(a+b)+c=a+(b+c)
這里a,b,c表示任意三個有理數。
根據加法交換律和結合律可以推出:三個以上的有理數相加,可以任意交換加數的位置,也可以先把其中的幾個數相加。
三、應用遷移,鞏固提高
例(P22例3)計算:
(1)33+(-2)+7+(-8)
(2)4.375+(-82)+(-4.375)
引導學生發現,在本例中,把正數與負數分別結合在一起再相加,有相反數的先把相反數相加;能湊整的先湊整;有分母相同的,先把同分母的數相加,計算就比較簡便。
本例先由學生在筆記本上解答,然后教師根據學生解答情況指定幾名學生板演,并引導學生發現,簡化加法運算一般是三種方法:首先消去互為相反數的兩數(其和為0),同號結合或湊整數。
例2(P23例4)
教師通過啟發,由學生列出算式,再讓學生思考,如何應用運算律,使計算簡便。第一問可以讓學生自已作行程示意圖幫助理解,注意第一問和第二問的區別。
練習課本P.23練習:1、2
四、總結反思
本節課你有哪些收獲?
五、作業
1、課本P27習題1.4A組第3、4題
2、課本P28習題1.4B組第12題
七年級上冊的數學教案篇11
教學目標
1.會把有理數的加減法混合運算統一為加法運算;
2.會把省略加號和括號的有理數加減混合運算看成幾個有理數的加法運算;
3.進一步感悟“轉化”的思想.
教學重點
把有理數的加減法混合運算統一為加法運算.
教學難點
省略負數前面的加號的有理數加法,運用運算律交換加數位置時,符號不變.
教學過程
根據有理數的減法法則,有理數的加減速混合運算可以統一為加法運算.
1.完成下列計算:
(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4).
歸納:根據有理數的減法法則,有理數的加減混合運算可以統一為運算;
(2)式統一成加法是________________________________;
省略負數前面的加號和()后的形式是______________________;
讀作____________________或_______________________.
展示交流
1.把下列運算統一成加法運算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3)2+5-8=_________________________________;
(4)14-(-12)+(-25)-17=_____________________________________.
2.將下列有理數加法運算中,加號省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)=____________________________.
3.將下列運算先統一成加法,再省略加號:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4.仿照本P37例6,完成下列計算:
(1)-4-5+6;(2)-23+41-24+12-46.
5.仿照本P38例7,巡道員沿東西方向的鐵路巡視維護,從住地出發,他先向東巡視了6km,休息之后,繼續向東維護了4km;然后折返向西巡視了12.5km,此時他在住地的什么方向?與駐地的距離是多少?
盤點收獲
個案補充
課堂反饋
1.計算:
2.早晨6:00的氣溫為℃,到中午2:00氣溫上升了8℃,到晚上10:00氣溫又下降了9℃.晚上10:00的氣溫是多少?
遷移創新
一架飛機做特技表演,它起飛后的高度變化情況為:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此時飛機比起飛點高了多少千米?
課堂作業
本P39習題2.5第6題(1)、(3)、(5),第7題.
七年級上冊的數學教案篇12
(1)常見的幾何體;
(2)構成圖形的基本元素——點、線、面及點、線與平面
圖形的一些簡單性質;點動成線,線動成面,面動成體
(3)棱柱的特征;并注意棱柱和圓柱的聯系與區別
(4)長方體、正方體的表面沿某些棱展開的平面圖形及圓
柱、圓錐的側面展開圖;
(5)用一個平面去截一個幾何體,截面的形狀;
(6)物體的三視圖,立方體及其簡單組合的三視圖;
(7)生活中的平面圖形.
一.填空:
1.這個幾何體的名稱是______;它有_____個面組成;它有____個頂點;經過每個頂點有____條邊。
2.正方體或長方體是一個立體圖形,它是由______個面,______條棱,_____個頂點組成的.
3.在①長方體、②球、③圓錐、④圓柱、⑤三棱柱這五種幾何體中,其主視圖、左視圖、俯視圖都完全相同的是(填上序號即可)
4.一個棱柱有十個頂點,且所有側棱的和為30cm,則每條側棱長為cm.
5.將下面4個圖用紙復制下來,然后沿所畫線折起來,把折成的立體圖形名稱寫在圖的下邊橫線上:
6.如圖是一些相同的正方塊構成的立體圖形的三視圖,則構成這個立體圖形的小方塊數為.
7.如圖所示,木工師傅把一個長為1.6米的長方體木料鋸成3段后,表面積比原來增加了
80,那么這根木料本來的體積是
8.要把一個長方體的表面剪開展成平面圖形,至少需要剪開________條棱.
9.如圖,截去正方體一角變成一個多面體,這個多面體有____個面,____條棱.
10.若要使圖中平面展開圖按虛線折疊成正方體后,相對面上兩個數之和為6,x=____,y=____.
11.四棱柱按如圖粗線剪開一些棱,展成平面圖形,請畫出平面圖來:
12.薄薄的硬幣在桌面上轉動時,看上去象球,這說明了_____________.
13.右圖中,三角形共有個。
14.如圖是用邊長為1的小正方體擺放成的一個幾何體的三視圖,這個幾何體的表面積為。
第13題主視圖俯視圖左視圖
二:選擇題(每題4分,共24分).
15.桌上擺滿了朋友們送來的禮物,小狗貝貝好奇地想看個究竟.
Pqmn
①小狗先是站在地面上看,②然后抬起了前腿看,③唉,還是站到凳子上看吧,④最后,
它終于爬上了桌子………按小狗四次看禮物的順序,四個畫面的順序為()
A.mnpqB.qnmpC.pqmnD.mnqp
16.以下四個平面圖形中,不是正方體的展開圖的是()
ABCD
17.只有蓋的盒子長、寬、高分別為5、5、3cm,如圖所示,有一只螞蟻從A點出
發,沿棱爬行,爬行的路徑不許重復,則螞蟻回到A點時,最多爬行()
A.24cmB.32cmC.34cmD.48cm
18.一個幾何體是由若干個相同的正方體組成的,其主視圖和左視圖
如圖所示,則這個幾何體最多可由多少個這樣的正方體組成()
A.12個B.13個C.14個D.18個
19.把一個正方體截去一個角,剩下的幾何體最多有幾個面()
A.5個面B.6個面C.7個面D.8個面
20.從多邊形一條邊上的一點(不是頂點)發出發,連接各個頂點得
到20__個三角形,則這個多邊形的邊數為().
A.20__B.20__C.20__D.20__
21.下列四個圖形折疊后與所得的正方體的各個面上所標數字一致的是()
22.如圖(1)是正方體表面積展開圖,如果將其折回原來的
正方體圖(2)時,與點P重合的兩點應該是()
A.S和ZB.T和Y
C.U和YD.T和V
23.用一個平面去截①圓錐;②圓柱;③球;④五棱柱,能得到截面是圓的圖形是()
A.①②④B.①②③C.②③④D.①③④
24.如圖是正方體的表面展開圖,折疊成正方體后,其中哪兩個完全相同()
A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)
25.從多邊形一個頂點處出發,連接各個頂點得到20__個三角形,
則這個多邊形的邊數為()
A.20__B.20__C.20__D.20__
七年級上冊的數學教案篇13
學習過程:
一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?
2.加法的交換律:
兩個數相加,交換__的位置,和不變.用式子表示:a+b=。
3.加法的結合律:
《1.3.1有理數的加法》同步練習含答案
在進行兩個異號有理數的加法運算時,其計算步驟如下:
①將絕對值較大的有理數的符號作為結果的符號并記住;
②將記住的符號和絕對值的差一起作為最終的計算結果;
③用較大的絕對值減去較小的絕對值;
④求兩個有理數的絕對值;⑤比較兩個絕對值的大小.其中操作順序正確的是()
A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②
《1.3.1有理數的加法》同步練習題(含答案)
10.小蟲從某點A出發在一直線上來回爬行,假定向右爬行的路程記為正數,向左爬行的路程記為負數,爬行的各段路程依次為(單位:cm):+5,-3,+10,-8,-6,+12,-10。
(1)小蟲最后是否回到出發點A?
(2)在爬行過程中,如果每爬行1cm獎勵一粒芝麻,那么小蟲一共得到多少粒芝麻?
解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,
所以小蟲最后回到出發點A。
(2)小蟲爬行的總路程為+5+-3++10+-8+-6++12+-10=5+3+10+8+6+12+10=54(cm)。
所以小蟲一共得到54粒芝麻。
七年級上冊的數學教案篇14
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的&39;喜悅,保持學好數學的信心。
教學重點:
掌握有理數的兩種分類方法
教學難點:
給定的數字將被填入它所屬的集合中
教學方法:
問題導向法
學習方法:
自主探究法
教學過程:
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
1、有以下數字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
(2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
七年級上冊的數學教案篇15
【教學目標】
1.進一步理解有理數加法的實際意義;
2.經歷探索有理數加法法則的過程,理解有理數加法法則;
3.感受數學模型的思想;
4.養成認真計算的習慣.
【對話探索設計】
〖探索1
1.第一天贏利,第二天還贏利,兩天合起來算,是贏利還是虧本?
2.第一天虧本,第二天還是虧本,兩天合起來算,是贏利還是虧本?
3.一個物體作左右方向的運動,規定向右為正.如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是什么?
假設原點為運動起點,用數軸檢驗你的答案.
〖法則理解
有理數加法法則第1條是:同號兩數相加,取___________,并把絕對值_________.
這條法則包括兩種情況:
(1)兩個正數相加,顯然取正號,并把絕對值相加,例(+3)+(+5)=+8;
(2)兩個負數相加,取_____號,并把______相加.例如(-3)+(-5)=-(3+5)=-8.答案-8之所以取-號,是因為______________,8是由_____的絕對值和______的絕對值相______而得.
〖練習
1.上午6時的氣溫是-5℃,下午5時的氣溫比上午6時下降3℃,下午5時的氣溫是多少?
2.第一場比賽紅隊勝黃隊5:2,第二場比賽藍隊勝黃隊3:1,兩場比賽黃隊凈勝幾個球?
3.第一天向北走-30km,第二天又向北走-40km,兩天一共向北走多少km?
4.仿照(-3)+(-5)=-(3+5)=-8的格式解答:
(1)-10+(-30)=
(2)(-100)+(-200)=
(3)(-188)+(-309)=
〖探索2
1.第一天營業贏利90元,第二天虧本80元,兩天一共贏利多少元?如果第二天虧本120元呢?
2.第一天贏利,第二天虧本,兩天合起來算,是贏利還是虧本?
3.正數和負數相加,結果是正數還是負數?
〖法則理解
有理數加法法則第2條的前半部分是:絕對值不相等的異號兩數相加,取_________________的符號,并用_______________減去_________________.
例如(+6)+(-2)=+(6-2)=+4.答案+4之所以取+號,是因為兩個加數(+6與-2)中________的絕對值較大;答案+4的絕對值4是由加數中較大的絕對值______減去較小的絕對值____得到.
又例,計算(-8)+(+3)時,先取______號,這是因為兩個加數中,______的絕對值較大.然后再用較大的絕對值____減去較小的絕對值____,得_____,于是最后得到答案是______.計算的過程可以寫成(-8)+(+3)=-(8-3)=-5.
〖議一議
有人說,正數和負數相加時,實質就是把加法運算轉化為小學的減法運算.他說的對不對?
〖練習
1.第一場比賽紅隊勝黃隊5:2,第二場比賽黃隊勝藍隊3:1,兩場比賽黃隊凈勝幾個球?
2.如果物體先向右運動5米,再向右運動-8米,那么兩次運動后總的結果是什么?
3.檢查3包洗衣粉的重量(單位:克),把其中超過標準重量的數量記為正數,不足的數量記作負數,結果如下:
-3.5,+1.2,-2.7.
這3包洗衣粉的重量一共超過標準重量多少?
4.仿照(-8)+(+3)=-(8-3)=-5的格式解題:
(1)(-3)+(+8)=
(2)-5+(+4)=
(3)(-100)+(+30)=
(4)(-100)+(+109)=
〖法則理解
有理數加法法則第2條的后半部分是:互為相反數的兩個數相加得_____.
例如(+3)+(-3)=______,(-108)+(+108)=______.
〖例題學習
P21.例1,例2
P22.練習2(按例1格式算.)
〖作業
P29.習題1,P32.習題8,9,10
【備選素材】
用一個□表示+1,用一個■表示-1.顯然□+■=0,
(1)■■+□□□=(■+□)+(■+□)+□=_____.
這表明-2+3=+(3-2)=1.
想一想:答案為什么是正的?為什么轉化為減法運算?
(2)計算■■■■■+□□□□□=_____.
(3)計算■■■■■+□□=(■■+□□)+■■■=______.
這說明-5+(+2)=-(___-___)=_______.
(4)計算■■■+□□□□□=?
七年級上冊的數學教案篇16
教學目的
掌握去分母解方程的方法,體會到轉化的思想。對于求解較復雜的方程,注意培養學生自覺反思求解的過程和自覺檢驗方程的解是否正確的良好習慣。
重點、難點
1、重點:掌握去分母解方程的方法。
2、難點:求各分母的最小公倍數,去分母時,有時要添括號。
教學過程
一、復習提問
1.去括號和添括號法則。
2.求幾個數的最小公倍數的方法。
二、新授
例1:解方程(見課本)
解一元一次方程有哪些步驟?
一般要通過去分母,去括號,移項,合并同類項,未知數的系數化為1等步驟,把一個一元一次方程“轉化”成x=a的形式。解題時,要靈活運用這些步驟。
補充例:解方程(x+15)=-(x-7)
三、鞏固練習
教科書第10頁,練習1、2。
四、小結
1.解一元一次方程有哪些步驟?
2.掌握移項要變號,去分母時,方程兩邊每一項都要乘各分母的最小公倍數,切勿漏乘不含有分母的項,另外分數線有兩層意義,一方面它是除號,另一方面它又代表著括號,所以在去分母時,應該將分子用括號括上。
五、作業
教科書第13頁習題6.2,2第2題。
七年級上冊的數學教案篇17
一、教學目標:
1、通過對多種實際問題的分析,感受方程作為刻畫現實世界有效模型的意義。
2、通過觀察,歸納一元一次方程的概念
3、積累活動經驗。
二、重點和難點
重點:歸納一元一次方程的概念
難點:感受方程作為刻畫現實世界有效模型的意義
三、教學過程
1、課前訓練一
(1)如果=9,則=;如果2=9,則=
(2)在數軸上距離原點4個單位長度的數為
(3)下列關于相反數的說法不正確的是()
A、兩個相反數只有符號不同,并且它們到原點的距離相等。
B、互為相反數的兩個數的絕對值相等
C、0的相反數是0
D、互為相反數的兩個數的和為0(字母表示為、互為相反數則)
E、有理數的相反數一定比0小
(4)乘積為1的兩個數互為倒數,如:
(5)如果,則()
A、,互為倒數B、,互為相反數C、,都是0D、,至少有一個為0
(6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長高約為12厘米,問大約經過幾周后樹苗長高到1米?設大約經過周后樹苗長高到1米,依題意得方程()
A、B、C、D、00
2、由課本P149卡通圖畫引入新課
3、分組討論P149兩個練習
4、P150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個足球場的長與寬各是多少米?設這個足球場的寬為米,那么長為(+25)米,依題意可列得方程為:()
A、+25=310B、+(+25)=310C、2[+(+25)]=310D、[+(+25)]2=310
課本的寬為3厘米,長比寬多4厘米,則課本的面積為平方厘米。
5、小芳買了2個筆記本和5個練習本,她遞給售貨員10元,售貨員找回0.8元。已知每個筆記本比練習本貴1.2元,求每個練習本多少元?
解:設每個練習本要元,則每個筆記本要元,依題意可列得方程:
6、歸納方程、一元一次方程的概念
7、隨堂練習PO151
8、達標測試
(1)下列式子中,屬于方程的是()
A、B、C、D、
(2)下列方程中,屬于一元一次方程的是()
A、B、C、D、
(3)甲、乙兩隊開展足球對抗比賽,規定每隊勝一場得3分,平一場得1分,負一場得0分。甲隊與乙隊一共進行了10場比賽,且甲隊保持了不敗記錄,甲隊一共得22分。求甲隊勝了多少場?平了多少場?
解:設甲隊勝了場,則平了場,依題意可列得方程:
解得=
答:甲隊勝了場,平了場。
(4)根據條件“一個數比它的一半大2”可列得方程為
(5)根據條件“某數的與2的差等于最大的一位數”可列得方程為
四、課外作業
P151習題5.1
七年級上冊的數學教案篇18
一、教學內容
《有理數的加法》是北師大版七年級數學上冊第二章《有理數及其運算》第四節課的內容,這節課的內容應兩個課時完成。本課時是本節內容的第一課時,依據教材的安排本節課應是讓學生理解有理數的加法法則和運算律,最終熟練地進行整數加法運算,并能用運算律簡化運算。
在有理數范圍內進行的各種運算:加、減法可以統一成為加法,乘法、除法和乘方可以統一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵在于這一節的學習。
二、設計理念
七年級年齡段的學生思維活躍、求知欲強、有比較強烈的自我意識,對觀察、猜想、探索性的問題充滿好奇,又剛從小學升上初中三周時間,人人都自信滿滿,摩拳擦掌,準備大施拳腳,因此我采用探究式的學習方法,以“問題串”引領整個課堂,請同學們通過動腦、計算、分析得出結論,并利用組間游戲幫助學生理解法則,運用法則。
三、教學目標與重難點
目標:1.使學生掌握有理數加法法則,并能運用法則進行計算;
2.讓學生親身經歷探究有理數加法法則的過程,深刻感受分類討論、數形結合的思想,感受由具體到抽象、由特殊到一般的認知規律;
3.讓學生通過研討、分類、比較等方法的學習,培養歸納總結知識的能力。
重點:會用有理數加法法則進行運算.
難點:異號兩數相加的法則.
四、學情分析
1.學生非常熟悉正數加正數,正數加零的情況。
2.有理數的分類、數軸、絕對值的相關知識已經掌握。
3.學生善于形象思維,思維活躍,能積極參與討論。
五、教學策略
1.將本節課的教學內容設計成六個重要問題,引導學生深層次的思考;
2.由學生自己舉出生活中的具體實例,認識到運算的作用,加深對運算意義的理解;
3.在教學過程中,將每一個環節的要點及時歸納,并準確地表達,幫助學生構建知識體系。
六、教學流程
1.回顧舊知,啟發思維
展示課件上的三個問題,請同學們思考并回答。
(1)有理數是怎么分類的?
(2)有理數的絕對值是怎么定義的?
(3)下列各組數中,哪一個數的絕對值大?
7和4;-7和4;7和-4;-7和-4
【設計意圖】回顧與本節課有關的概念和性質,為新課引入進行鋪墊。
2.創設情境引入課題
問題一:兩個有理數相加,有多少種不同的情形?
答:正+正,負+負,正+負,正+0,負+0,0+0.
【設計意圖】強化學生分類討論的意識,明確研究數學問題一般所應采取的具體步驟。同時也增強了孩子們學習的信心,因為在六種不同的情況中,學生們四種都已經熟練掌握,僅剩兩種需要攻克。
問題二:你能舉出需要運用有理數加法的知識去解決的生活實例嗎?
請同學們舉自己熟悉的例子:①西安夜間平均氣溫為16攝氏度,白天的平均溫度比夜間高9攝氏度,那么白天的平均溫度是多少?②土星表面的夜間平均氣溫為-150攝氏度,白天比夜間高27攝氏度,那么白天的平均溫度是多少攝氏度?(多媒體展示題目)
師:同學們已經有了研究有理數加法運算的準備知識了。今天同學們有信心和我一同當回“研究生”共同研究有理數的加法運算嗎?
(出示課題)
【設計意圖】體現了數學源于生活,體會學習有理數加法的必要性,激發學生探究新知的興趣.同時肯定學生的知識準備,樹立學生進一步學習的信心,激發學生的斗志,讓學生盡快參與到教學中來,進一步體會到自己是課堂的主人。
(二)分析問題探究新知
問題三:你能根據同學們所舉的例子總結出正數+負數、負數+負數的運算規律嗎?
學生們各抒己見,總結法則。
1、同號兩數相加,取相同的符號,并把絕對值相加。
2、絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3、一個數同0相加,仍得這個數
老師總結口訣:“同號相加一邊倒,異號等距零正好,異號不等‘大’減‘小’,符號跟著‘大’的跑”。
【設計意圖】感受兩個有理數相加的各種情況。用表格的形式展示有理數加法的所有可能情況,使學生體會數學思維的規律性和嚴密性,感受分類和歸納的數學思想方法。借助于生活中的實例,使學生親身參加探索發現,主動的獲取知識和技能,直觀感受有理數的加法法則。鼓勵學生用自己的語言概括法則,提高學生的概括能力和語言表達能力
(三)運用新知深入體會
例1計算(-3)+(-9).
分析:這是兩個負數相加,屬于同號兩數相加,和的符號與加數相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).
解:(-3)+(-9)=-12.
分析:這是異號兩數相加,和的符號與絕對值較大的加數的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對
解題時,先確定和的符號,后計算和的絕對值.
課堂練習:
1.計算(口答)
(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;
2.計算
(1)5+(-22);(2)(-1.3)+(-8)
(3)(-0.9)+1.5;(4)2.7+(-3.5)
3.用“>”或“<”填空:
(1)如果a>0,b>0,那么a+b____0;
(2)如果a<0,b<0,那么a+b____0;
(3)如果a>0,b<0,a>b,那么a+b____0;
(4)如果a<0,b>0,a<b,那么a+b____0;
【設計意圖】幫助學生熟悉法則,并養成“算必有據”的習慣。更重要的是滲透了研究一般與特殊關系的思想。
問題四:你能嘗試著使用數學語言將有理數加法法則表示出來嗎?
(1)如果a>0,b>0,那么a+b=+(a+b)
(2)如果a<0,b<0,那么a+b=-(a-b)
(3)如果a>0,b<0,a>b,那么a+b=+(a-b)
(4)如果a<0,b>0,a<b,那么a+b=-(b-a)
(5)a+0=a.
【設計意圖】有意識培養學生使用數學表達的能力,將數學書寫滲透到每一節課當中。
(四)延伸拓展敢于挑戰
問題五:和一定大于加數嗎?和與兩個加數這三者之間的有什么大小關系?
問題六:小學學過的運算律是否適用于有理數的加法?
【設計意圖】由課堂延伸到課外,不僅為下節課做好了鋪墊,也給學有余力的同學留下了無限的思考空間。
(五)歸納總結感受思想
(1)本節課所學的有理數的加法法則是什么?在應用時應注意哪些問題?
(2)本節課你學習到了哪些數學思想方法?
【設計意圖】由學生總結,歸納反思,加深對知識的理解,并且能熟練運用所學知識解決問題及養成歸納總結的習慣和語言表達的能力。
(六)布置作業
(1)P56習題1、3
(2)請同學們回家用有理數牌和父母進行有理數加法運算比賽。
【設計意圖】充分發揮家庭教育資源,讓學生在快樂的游戲中達到熟練的程度。
七、設計說明
1.通過“問題串”的設置,激發興趣,引起學生深層次的思考;
2.通過“互舉例子”、“小組競賽”兩個活動,鼓勵學生主動參與活動。
3.通過法則的符號化,促進學生數學語言的形成,數學表示能力的提升。
4.在活動中注重運用態勢、語言對學生進行即興評價,在整個評價的設計中安排多維評價:既關注學生合作交流的意識和能力、又關注學生數學思維能力與發展水平、還關注學生發現問題和解決問題的能力。