鼎尖優(yōu)秀教案高一數(shù)學(xué)
學(xué)習(xí)數(shù)學(xué)能很好的鍛煉人的思維,使人們能更加深刻地理解生活,從而快速提升自身的修養(yǎng)。你知道高一的數(shù)學(xué)教案如何設(shè)計(jì)嗎?這次小編給大家整理了鼎尖優(yōu)秀教案高一數(shù)學(xué),供大家閱讀參考,希望大家喜歡。
鼎尖優(yōu)秀教案高一數(shù)學(xué)1
重點(diǎn)難點(diǎn)教學(xué):
1.正確理解映射的概念;
2.函數(shù)相等的兩個(gè)條件;
3.求函數(shù)的定義域和值域。
一.教學(xué)過程:
1. 使學(xué)生熟練掌握函數(shù)的概念和映射的定義;
2. 使學(xué)生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3. 使學(xué)生掌握函數(shù)的三種表示方法。
二.教學(xué)內(nèi)容: 1.函數(shù)的定義
設(shè)A、B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)_,在集合B中都有確定的數(shù)()f_和它對(duì)應(yīng),那么稱:fAB?為從集合A到集合B的一個(gè)函數(shù)(function),記作:
(),yf__A
其中,_叫自變量,_的取值范圍A叫作定義域(domain),與_的值對(duì)應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{()|}f__A?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(_)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(_)”;
②函數(shù)符號(hào)“y=f(_)”中的f(_)表示與_對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘_. 2.構(gòu)成函數(shù)的三要素 定義域、對(duì)應(yīng)關(guān)系和值域。 3、映射的定義
設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意
一個(gè)元素_,在集合B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從 集合A到集合B的一個(gè)映射。
4. 區(qū)間及寫法:
設(shè)a、b是兩個(gè)實(shí)數(shù),且a
(1) 滿足不等式a_b??的實(shí)數(shù)_的集合叫做閉區(qū)間,表示為[a,b];
(2) 滿足不等式a_b??的實(shí)數(shù)_的集合叫做開區(qū)間,表示為(a,b);
5.函數(shù)的三種表示方法 ①解析法 ②列表法 ③圖像法
鼎尖優(yōu)秀教案高一數(shù)學(xué)2
一、教材分析
1、 教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、 教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1) 教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
(2) 能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過舉以下一個(gè)通俗的例子引出通過某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二. 新課講授:
(1) 接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過對(duì)應(yīng)法則f在b中是否有確定的元素與之對(duì)應(yīng)。
(2)鞏固練習(xí)課本52頁第八題。
此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1. 給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說明把函f:a→b記為y=f(_),其中自變量_的取值范圍a叫做函數(shù)的定義域,與_的值相對(duì)應(yīng)的y(或f(_))值叫做函數(shù)值,函數(shù)值的集合{ f(_):_∈a}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4. f(_)是一個(gè)符號(hào),不表示f與_的乘積,而表示_經(jīng)過f作用后的結(jié)果。
5. 集合a中的數(shù)的任意性,集合b中數(shù)的性。
6. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。
三.講解例題
例1.問y=1(_∈a)是不是函數(shù)?
解:y=1可以化為y=0__+1
畫圖可以知道從_的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四.課時(shí)小結(jié):
1. 映射的定義。
2. 函數(shù)的近代定義。
3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4. 函數(shù)近代定義的五大注意點(diǎn)。
五.課后作業(yè)及板書設(shè)計(jì)
書本p51 習(xí)題2.1的1、2寫在書上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
函數(shù)(一)
一、映射:
2.函數(shù)近代定義: 例題練習(xí)
二、函數(shù)的定義 [注]1—5
1.函數(shù)傳統(tǒng)定義
三、作業(yè):
鼎尖優(yōu)秀教案高一數(shù)學(xué)3
教學(xué)目的:
(1)明確函數(shù)的三種表示方法;
(2)在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);
(3)通過具體實(shí)例,了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用;
(4)糾正認(rèn)為“y=f(_)”就是函數(shù)的解析式的片面錯(cuò)誤認(rèn)識(shí).
教學(xué)重點(diǎn):函數(shù)的三種表示方法,分段函數(shù)的概念.
教學(xué)難點(diǎn):根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),什么才算“恰當(dāng)”?分段函數(shù)的表示及其圖象.
教學(xué)過程:
引入課題
復(fù)習(xí):函數(shù)的概念;
常用的函數(shù)表示法及各自的優(yōu)點(diǎn):
(1)解析法;
(2)圖象法;
(3)列表法.
新課教學(xué)
(一)典型例題
例1.某種筆記本的單價(jià)是5元,買_ (_∈{1,2,3,4,5})個(gè)筆記本需要y元.試用三種表示法表示函數(shù)y=f(_) .
分析:注意本例的設(shè)問,此處“y=f(_)”有三種含義,它可以是解析表達(dá)式,可以是圖象,也可以是對(duì)應(yīng)值表.
解:(略)
注意:
函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);
解析法:必須注明函數(shù)的定義域;
圖象法:是否連線;
列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.
鞏固練習(xí):
課本P27練習(xí)第1題
例2.下表是某校高一(1)班三位同學(xué)在高一學(xué)年度幾次數(shù)學(xué)測(cè)試的成績(jī)及班級(jí)及班級(jí)平均分表:
第一次 第二次 第三次 第四次 第五次 第六次 王 偉 98 87 91 92 88 95 張 城 90 76 88 75 86 80 趙 磊 68 65 73 72 75 82 班平均分 88.2 78.3 85.4 80.3 75.7 82.6 請(qǐng)你對(duì)這三們同學(xué)在高一學(xué)年度的數(shù)學(xué)學(xué)習(xí)情況做一個(gè)分析.
分析:本例應(yīng)引導(dǎo)學(xué)生分析題目要求,做學(xué)情分析,具體要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
本例為了研究學(xué)生的學(xué)習(xí)情況,將離散的點(diǎn)用虛線連接,這樣更便于研究成績(jī)的變化特點(diǎn);
本例能否用解析法?為什么?
鞏固練習(xí):課本P27練習(xí)第2題
例3.畫出函數(shù)y = | _ | .
解:(略)
鞏固練習(xí):課本P27練習(xí)第3題
拓展練習(xí):
任意畫一個(gè)函數(shù)y=f(_)的圖象,然后作出y=|f(_)| 和 y=f (|_|) 的圖象,并嘗試簡(jiǎn)要說明三者(圖象)之間的關(guān)系.
課本P27練習(xí)第3題
例4.某市郊空調(diào)公共汽車的票價(jià)按下列規(guī)則制定:
(1) 乘坐汽車5公里以內(nèi),票價(jià)2元;
(2) 5公里以上,每增加5公里,票價(jià)增加1元(不足5公里按5公里計(jì)算).
已知兩個(gè)相鄰的公共汽車站間相距約為1公里,如果沿途(包括起點(diǎn)站和終點(diǎn)站)設(shè)20個(gè)汽車站,請(qǐng)根據(jù)題意,寫出票價(jià)與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.
分析:本例是一個(gè)實(shí)際問題,有具體的實(shí)際意義.根據(jù)實(shí)際情況公共汽車到站才能停車,所以行車?yán)锍讨荒苋≌麛?shù)值.
解:設(shè)票價(jià)為y元,里程為_公里,同根據(jù)題意,
如果某空調(diào)汽車運(yùn)行路線中設(shè)20個(gè)汽車站(包括起點(diǎn)站和終點(diǎn)站),那么汽車行駛的里程約為19公里,所以自變量_的取值范圍是{_∈N_| _≤19}.
由空調(diào)汽車票價(jià)制定的規(guī)定,可得到以下函數(shù)解析式:
()
根據(jù)這個(gè)函數(shù)解析式,可畫出函數(shù)圖象,如下圖所示:
注意:
本例具有實(shí)際背景,所以解題時(shí)應(yīng)考慮其實(shí)際意義;
本題可否用列表法表示函數(shù),如果可以,應(yīng)怎樣列表?
實(shí)踐與拓展:
請(qǐng)你設(shè)計(jì)一張乘車價(jià)目表,讓售票員和乘客非常容易地知道任意兩站之間的票價(jià).(可以實(shí)地考查一下某公交車線路)
說明:象上面兩例中的函數(shù),稱為分段函數(shù).
鼎尖優(yōu)秀教案高一數(shù)學(xué)4
教學(xué)目標(biāo):
(1) 了解集合、元素的概念,體會(huì)集合中元素的三個(gè)特征;
(2) 理解元素與集合的"屬于"和"不屬于"關(guān)系;
(3) 掌握常用數(shù)集及其記法;
教學(xué)重點(diǎn):掌握集合的基本概念;
教學(xué)難點(diǎn):元素與集合的關(guān)系;
教學(xué)過程:
一、引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年級(jí)在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念--集合(宣布課題),即是一些研究對(duì)象的總體。
閱讀課本P2-P3內(nèi)容
二、新課教學(xué)
(一)集合的有關(guān)概念
1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們
能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)總體。
2. 一般地,我們把研究對(duì)象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡(jiǎn)稱集。
3. 思考1:判斷以下元素的全體是否組成集合,并說明理由:
(1) 大于3小于11的偶數(shù);
(2) 我國(guó)的小河流;
(3) 非負(fù)奇數(shù);
(4) 方程的解;
(5) 某校2021級(jí)新生;(6) 血壓很高的人;
(7) 的數(shù)學(xué)家;
(8) 平面直角坐標(biāo)系內(nèi)所有第三象限的點(diǎn)
(9) 全班成績(jī)好的學(xué)生。
對(duì)學(xué)生的解答予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問題。
4. 關(guān)于集合的元素的特征
(1)確定性:設(shè)A是一個(gè)給定的集合,_是某一個(gè)具體對(duì)象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對(duì)象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。
(3)無序性:給定一個(gè)集合與集合里面元素的順序無關(guān)。
(4)集合相等:構(gòu)成兩個(gè)集合的元素完全一樣。
5. 元素與集合的關(guān)系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作:a∈A
(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作:aA
例如,我們A表示"1~20以內(nèi)的所有質(zhì)數(shù)"組成的集合,則有3∈A
4A,等等。
6.集合與元素的字母表示: 集合通常用大寫的拉丁字母A,B,C...表示,集合的元素用小寫的拉丁字母a,b,c,...表示。
7.常用的數(shù)集及記法:
非負(fù)整數(shù)集(或自然數(shù)集),記作N;
正整數(shù)集,記作N_或N+;
整數(shù)集,記作Z;
有理數(shù)集,記作Q;
實(shí)數(shù)集,記作R;
(二)例題講解:
例1.用"∈"或""符號(hào)填空:
(1)8 N; (2)0 N;
(3)-3 Z; (4) Q;
(5)設(shè)A為所有亞洲國(guó)家組成的集合,則中國(guó) A,美國(guó) A,印度 A,英國(guó) A。
例2.已知集合P的元素為, 若3∈P且-1P,求實(shí)數(shù)m的值。
(三)課堂練習(xí):
課本P5練習(xí)1;
歸納小結(jié):
本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明,然后介紹了常用集合及其記法。
作業(yè)布置:
1.習(xí)題1.1,第1- 2題;
2.預(yù)習(xí)集合的表示方法。