萬能教案模板高中數學
教案的編排以教學過程的步驟為基礎,使教師能夠清晰地了解整個教學流程,從而有利于教學的有序進行。優秀的萬能教案模板高中數學要怎么寫?下面給大家整理萬能教案模板高中數學,希望對大家能有幫助。
萬能教案模板高中數學篇1
本節課是《等比數列的前n項和》的第一課時,學生在學習了等比數列的概念、等差與等比數列的通項公式及等差數列的前n項和公式前提下學習的,對于本節課所需的知識點和探究方法都有了一定的儲備。這節課我充分利用情境,激發學生興趣,順利導入本節課的內容。
本節課我用心準備、精心設計、潛心專研,是我上好這節課的前提。在教學過程中,我充分體現了教學目標,抓住了教學重點,解決了教學難點,更重要的是,全班學生心、神、情、與我深度融合。這節課的.內容是“等差數列的前n項和”與“等比數列”內容的延續,為學生后面學綜合數列的求和做了鋪墊,重點是推導等比數列的前n項和的公式以及公式的簡單應用,難點是用錯位相減法推導等比數列的前n項和公式以及公式應用中對q與1的討論。本節課我注重從“知識傳授”的傳統模式轉變為“以學生為主體”的參與模式,注重數學思想方法的滲透和良好的思維品質的養成,注重學生創造精神和實踐能力的培養,這在一定的程度上,激活了學生的思維,但對教師的挑戰也是不言而喻的,不僅要透徹理解教材的意圖,還要有寬厚的知識積累和深厚的自學功底。
在等比數列求和的教學時,開始我給同學們說了一個故事,“在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。”為什么呢?同學們很好奇,于是有計算器的同學拿出了計算器,結果沒有計算完,計算器就算不出來了。激發學生的興趣,調動學習的積極性,于是引入主題,等比數列求和。
首先讓學生回憶等差數列的求和公式的推導方法,結合自己的預習談談自己對課本上等比數列求和公式推導過程的理解,其本質是什么?這樣做的目的是什么?此時教師根據學生們的討論和展示,適時點撥,指出問題的關鍵。在用錯位相減法推出等比數列前n項和公式過程中,做差后提醒同學們,接下來要做什么工作,注意什么,學生們自然知道分母不能為零,因而知道了等比數列前n項和公式是分情況討論的,為什么會有公比為1和公比不為1兩種情況。此時再提醒學生等差數列求和公式是一個公式的兩種形式,而等比數列求和公式是兩種不同情況下的公式。然后是對求和公式的簡單應用。所以讓學生經歷等比數列前n項和公式的推導過程成了本節課的重點與難點,在改善學生的學習方式上,是讓學生提出問題并解決問題來進行自主學習、合作學習與探究學習。
在教學環節上我利用小組合作學習、學生自主學習、小組討論、學生展示、師生點評,教師總結升華,當堂檢測等環節,有效地實現本節課的教學目標。在教學評價上我關注學生,不單純看學生是否會解題,關鍵是看學生是否動腦,看學生的思維過程來肯定和鼓勵,如在解決情景問題的過程中,學生躍躍欲試、情緒高漲、討論激烈,可能會探究出多種解決方案,適時地鼓勵與評價,使學生的進取心得到增強,是激發學生學習數學興趣的有效途徑。我通過對學生的評價,將知識點和思想方法又得到強化。
總之,這節課也有不足,容量大,知識豐富,滲透歸納與推理、錯位相減法、從特殊到一般、類比推理、分類討論等數學思想,對學生要求高。但通過課堂反應,教學效果好,這是我感到欣慰的地方。
萬能教案模板高中數學篇2
三維目標:
1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數表法的一般步驟;
2、過程與方法:
(1)能夠從現實生活或其他學科中提出具有一定價值的統計問題;
(2)在解決統計問題的過程中,學會用簡單隨機抽樣的方法從總體中抽取樣本。
3、情感態度與價值觀:通過對現實生活和其他學科中統計問題的提出,體會數學知識與現實世界及各學科知識之間的聯系,認識數學的重要性。
4、重點與難點:正確理解簡單隨機抽樣的概念,掌握抽簽法及隨機數法的步驟,并能靈活應用相關知識從總體中抽取樣本。
教學方法:
講練結合法
教學用具:
多媒體
課時安排:
1課時
教學過程:
一、問題情境
假設你作為一名食品衛生工作人員,要對某食品店內的一批小包裝餅干進行衛生達標檢驗,你準備怎樣做?顯然,你只能從中抽取一定數量的餅干作為檢驗的樣本。(為什么?)那么,應當怎樣獲取樣本呢?
二、探究新知
1、統計的有關概念:總體:在統計學中,所有考察對象的全體叫做總體、個體:每一個考察的對象叫做個體、樣本:從總體中抽取的一部分個體叫做總體的一個樣本、樣本容量:樣本中個體的數目叫做樣本的容量、統計的基本思想:用樣本去估計總體、
2、簡單隨機抽樣的概念一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣,這樣抽取的樣本,叫做簡單隨機樣本。
下列抽樣的方式是否屬于簡單隨機抽樣?為什么?
(1)從無限多個個體中抽取50個個體作為樣本。
(2)箱子里共有100個零件,從中選出10個零件進行質量檢驗,在抽樣操作中,從中任意取出一個零件進行質量檢驗后,再把它放回箱子。
(3)從8臺電腦中,不放回地隨機抽取2臺進行質量檢查(假設8臺電腦已編好號,對編號隨機抽取)
3、常用的簡單隨機抽樣方法有:
(1)抽簽法的定義。一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。
思考?你認為抽簽法有什么優點和缺點:當總體中的個體數很多時,用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現要抽取8位同學出來做游戲,請設計一個抽取的方法,要使得每位同學被抽到的機會相等。
分析:可以把57位同學的學號分別寫在大小,質地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分攪拌后,在從中個抽出8張紙片,再選出紙片上的學號對應的同學即可、基本步驟:第一步:將總體的所有N個個體從1至N編號;第二步:準備N個號簽分別標上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個號簽,不放回地連續取n次;第三步:將取出的n個號簽上的號碼所對應的n個個體作為樣本。
(2)隨機數法的定義:利用隨機數表、隨機數骰子或計算機產生的.隨機數進行抽樣,叫隨機數表法,這里僅介紹隨機數表法。怎樣利用隨機數表產生樣本呢?下面通過例子來說明,假設我們要考察某公司生產的500克袋裝牛奶的質量是否達標,現從800袋牛奶中抽取60袋進行檢驗,利用隨機數表抽取樣本時,可以按照下面的步驟進行。第一步,先將800袋牛奶編號,可以編為000,001,799。
第二步,在隨機數表中任選一個數,例如選出第8行第7列的數7(為了便于說明,下面摘取了附表1的第6行至第10行)。1622779439495443548217379323788442175331572455068877047447676301637859169555671998105071753321123429786456078252420744385760863244094727965449174609628735209643842634916421763350258392120676128673580744395238791551001342996602795490528477270802734328第三步,從選定的數7開始向右讀(讀數的方向也可以是向左、向上、向下等),得到一個三位數785,由于785<799,說明號碼785在總體內,將它取出;
繼續向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續向右讀,又取出567,199,507,依次下去,直到樣本的60個號碼全部取出,這樣我們就得到一個容量為60的樣本。
三、課堂練習
四、課堂小結
1、簡單隨機抽樣的概念一般地,設一個總體的個體數為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時各個個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機抽樣。
2、簡單隨機抽樣的方法:抽簽法隨機數表法
五、課后作業
P57練習1、2
六、板書設計
1、統計的有關概念
2、簡單隨機抽樣的概念
3、常用的簡單隨機抽樣方法有:
(1)抽簽法
(2)隨機數表法
4、課堂練習
萬能教案模板高中數學篇3
一、學情分析
本節課是在學生已學知識的基礎上進行展開學習的,也是對以前所學知識的鞏固和發展,但對學生的知識準備情況來看,學生對相關基礎知識掌握情況是很好,所以在復習時要及時對學生相關知識進行提問,然后開展對本節課的鞏固性復習。而本節課學生會遇到的困難有:數軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。
二、考綱要求
1.會用坐標表示平面向量的加法、減法與數乘運算.
2.理解用坐標表示的平面向量共線的條件.
3.掌握數量積的坐標表達式,會進行平面向量數量積的運算.
4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.
三、教學過程
(一) 知識梳理:
1.向量坐標的求法
(1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.
(2)設A(x1,y1),B(x2,y2),則
=_________________
| |=_______________
(二)平面向量坐標運算
1.向量加法、減法、數乘向量
設 =(x1,y1), =(x2,y2),則
+ = - = λ = .
2.向量平行的坐標表示
設 =(x1,y1), =(x2,y2),則 ∥ ?________________.
(三)核心考點·習題演練
考點1.平面向量的坐標運算
例1.已知A(-2,4),B(3,-1),C(-3,-4).設 (1)求3 + -3 ;
(2)求滿足 =m +n 的實數m,n;
練:(2015江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),則m-n的值為 .
考點2平面向量共線的坐標表示
例2:平面內給定三個向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求實數k的值;
練:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實數,( +λ )∥ ,則λ= ( )
思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?
方法總結:
1.向量共線的兩種表示形式
設a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應視題目的具體條件而定,一般情況涉及坐標的應用②.
2.兩向量共線的充要條件的作用
判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數的值.
考點3平面向量數量積的坐標運算
例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,
則 的值為 ; 的值為 .
【提示】解決涉及幾何圖形的向量數量積運算問題時,可建立直角坐標系利用向量的數量積的坐標表示來運算,這樣可以使數量積的運算變得簡捷.
練:(2014,安徽,13)設 =(1,2), =(1,1), = +k .若 ⊥ ,則實數k的值等于( )
【思考】兩非零向量 ⊥ 的充要條件: · =0? .
解題心得:
(1)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.
(2)解決涉及幾何圖形的向量數量積運算問題時,可建立直角坐標系利用向量的數量積的坐標表示來運算,這樣可以使數量積的運算變得簡捷.
(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.
考點4:平面向量模的坐標表示
例4:(2015湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則 的值為( )
A.6 B.7 C.8 D.9
練:(2016,上海,12)
在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則 的取值范圍是?
解題心得:
求向量的模的方法:
(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉化為數量積運算;
(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..
五、課后作業(課后習題1、2題)
萬能教案模板高中數學篇4
重點難點教學:
1.正確理解映射的概念;
2.函數相等的兩個條件;
3.求函數的定義域和值域。
一.教學過程:
1. 使學生熟練掌握函數的概念和映射的定義;
2. 使學生能夠根據已知條件求出函數的定義域和值域; 3. 使學生掌握函數的三種表示方法。
二.教學內容:
1.函數的定義
設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:
(),yfA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()|}fA?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.
2.構成函數的三要素 定義域、對應關系和值域。
3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區間及寫法:
設a、b是兩個實數,且a
(1) 滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];
(2) 滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);
5.函數的三種表示方法 ①解析法 ②列表法 ③圖像法
萬能教案模板高中數學篇5
尊敬的各位專家、評委:
下午好!
我的抽簽序號是___,今天我說課的課題是《______》第__課時。我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、教法學法分析、教學過程分析和評價分析四方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
(一)地位與作用
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4)學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據__在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點
本節課的教學重點是________,教學難點是_________。
三、教法、學法分析
(一)教法
基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.
(二)學法在學法上我重視了:1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
四、教學過程分析
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創設情境,提出問題。新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的
設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程.
(3)自我嘗試,初步應用。有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
(4)當堂訓練,鞏固深化。通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計
作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.
我設計了以下作業:(1)必做題(2)選做題
(三)板書設計板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。謝謝!
萬能教案模板高中數學篇6
教學目標
掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。
教學過程
等比數列性質請同學們類比得出。
【方法規律】
1、通項公式與前n項和公式聯系著五個基本量,“知三求二”是一類最基本的運算題。方程觀點是解決這類問題的基本數學思想和方法。
2、判斷一個數列是等差數列或等比數列,常用的方法使用定義。特別地,在判斷三個實數
a,b,c成等差(比)數列時,常用(注:若為等比數列,則a,b,c均不為0)
3、在求等差數列前n項和的(小)值時,常用函數的思想和方法加以解決。
【示范舉例】
例1:(1)設等差數列的前n項和為30,前2n項和為100,則前3n項和為。
(2)一個等比數列的前三項之和為26,前六項之和為728,則a1=,q=。
例2:四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數。
例3:項數為奇數的等差數列,奇數項之和為44,偶數項之和為33,求該數列的中間項。
萬能教案模板高中數學篇7
教學主題:
主要涉及到簡單排列組合問題,相同元素和不同元素排列組合問題。
捆綁法插空法特殊元素法特殊位置法定序法分組分配
教學內容及分析:
排列組合問題是高中數學知識的一個重要組成部分,在高考中也是必考內容,難度一般在中等偏上,只要掌握的排列組合的幾種典型方法,就能快速理解題型題意,快速找到突破口,對癥下藥,事半功倍,關鍵是要把握住什么題型用什么方法,通過題型對比分析相同點和不同點,區分易錯的,難點。另外,排列組合在適應新高考有著天然出題優勢,因為排列組合更貼近顯示生活,可以把我們課本上的抽象概念和數學公式和實際生活聯系起來,數學知識走進生活,知識來與是但高于生活,最后回歸于生活,才是我們學習知識,專研學問的立足點。本文就對數學中概率統計中的一小點內容——排列組合,做一個簡單的對比分析。
教學對象及特點:
排列組合在高中數學選修2—3。人教版教材,高二的學生在日常生活中,有很多需要用排列組合來解決的知識。作為二年級的學生,已有了一定的生活經驗及解決問題的能力。因此,在設計中,我通過創設一個完整的、有趣的生活情境來進行教學,力求使學生在經歷日常生活最簡單的事例中體驗到重要的數學思想方法,從而也感受到數學思想也是依托于生活,來源于生活,是有生命活力的。
教學目標:
基于對教材的理解,我把本節課的教學重點定為:在經歷簡單事物排列與組合規律的過程中體會排列與組合的數學思想。教學難點定為:培養學生全面有序的思考問題的意識。通過觀察、猜測、比較、實驗等活動,培養學生學習初步的觀察、分析能力和有序、全面地思考問題的意識。培養學生大膽猜想、積極思維的學習方法,使學生感受學習數學的快樂,進一步激發學生學習數學的興趣。
教學過程:
一、排列問題
例1:有4個男生,5個女生站隊,在下列條件下,有多少種情況?
(1)9個人全部站成一排;
(2)9個人站成兩排,前排站4人,后排站5人;
(3)9個人全部站一排,全部女生站在一起;(捆綁法)
(4)9個人全部站一排,全部男生都不相鄰;(插空法)
(5)9個人全部站一排,甲乙相鄰,丙丁不相鄰;
(6)9個人全部站一排,甲不在兩端;(特殊元素法,特殊位置法)
(7)9個人全部站一排,甲不在最左邊,乙不在最右邊;
(8)9個人全部站一排,甲在乙的左邊,可以不相鄰;(定序)
(9)9個人全部站一排,甲在乙的前面,乙在丙的前面,可以不相鄰;
(10)9個人全部站一排,甲在乙和丙的中間,可以不相鄰;
二、組合問題
例2:有25件產品,其中5件次品,從中任取3件,在下列條件下,有多少種情況?
(1)次品甲在內;
(2)次品甲不在內;
(3)恰有1件次品;
(4)至少1件次品;
(5)至少2件次品;
三、分組分配問題(不同元素)
例3:有6名學生分配到三個班級,在下列條件下,有多少種情況?
(1)隨機分配;
(2)每個班表達對一名學生的爭取意愿,6名學生實力相當;
(3)分配到三個班的人數分別為1、2、3人;
(4)分配到三個班的人數分別為1、1、4人;
(5)分配到三個班的人數分別為2、2、2人;
四、分組分配問題(相同元素)
例4:9個相同的乒乓球分給3個不同的人,在下列條件下,有多少種情況?
(1)3個人分別分到2個乒乓球,3個乒乓球,4個乒乓球;
(2)3個人分別分到2個乒乓球,2個乒乓球,5個乒乓球;
(3)3個人平均分,每人得到3個乒乓球;
(4)3個人每人至少分到1個乒乓球;
(5)3個人每個人至少分到2個乒乓球;
(6)3個人隨機分配這9個乒乓球;
五、分組分配問題(部分元素相同)
例5:有形狀大小相同,顏色不全相同的乒乓球,其中紅色乒乓球,黃色乒乓球,黑色乒乓球分別有5個,從中取出四個乒乓球排一排,在下列條件下,有多少種情況?
(1)取3個紅色乒乓球,1個黃色乒乓球;
(2)取2個紅色乒乓球,2個黃色乒乓球;
(3)取2個紅色乒乓球,1個黑色乒乓球,1個黃色乒乓球;
(4)取出的4個乒乓球中剛好3個乒乓球顏色相同;
(5)取出的4個乒乓球中剛好2個乒乓球顏色相同,其他兩個乒乓球顏色也相同;
取出的4個乒乓球中剛好2個乒乓球顏色相同,其他兩個乒乓球顏色不同;
所選技術以及技術使用的目的:選取的技術是PPT演示文稿,電子文檔,交互式電子白板,目的是能和學生共享資源,實時授課,不用邊抄題目邊講課,節約時間,集中精力。便于分享交流保存,復習資料可以打印存檔,電子檔紙質檔都可以,提高學習教學的效率。
萬能教案模板高中數學篇8
1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。
(1)能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象。
(2)能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題。
2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力。
3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性。
高一數學對數函數教案:教材分析
(1)對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的。故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解。對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎。
(2)本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質。難點是利用指數函數的圖象和性質得到對數函數的圖象和性質。由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點。
(3)本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開。而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點。
高一數學對數函數教案:教法建議
(1)對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
(2)在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。
萬能教案模板高中數學篇9
教學目標
1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.
(2)能從數和形兩個角度認識單調性和奇偶性.
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.
教學建議
一、知識結構
(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
二、重點難點分析
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
萬能教案模板高中數學篇10
一、設計思想
本節課是數列的起始課,著重研究數列的概念,明確數列與函數的關系,用函數的思想看待數列。通過引導學生通過對實例的分析體會數列的有關概念,并與集合類比,通過類比,學生能認識到數列的明確性、有序性和可重復性的特點。在體會數列與集合的區別中,學生意識到數列中的每一項與所在位置有關,并通研究數列的表示法,學生意識到數列中還有潛在的自變量——序號,從而發現數列也是一種特殊的函數,能用函數的觀點重新看待數列。
二、教學目標
1.通過自然界和生活中實例,學生意識到有序的數是存在的,能概況出數列的概念,并能辨析出數列和集合的區別;
2.通過思考數列的表示,學生意識到可以用表達式簡潔的表達數列,能分析出數列的項是與序號相關,需要借助于序號來表示數列的項;
3.在用表達式表示數列的過程中,學生發現項與序號的對應關系,認識到數列是一種特殊的函數,能用函數的觀點重新研究數列;
4.通過對一列數的觀察,能用聯系的觀點看待數列,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力.
5.從現實出發,學生能抽象出現實生活中的數列
重點:理解數列的概念,認識數列是反映自然規律的基本數學模型難點:認識數列是一種特殊的函數,發現數列與函數之間的關系
三、教學過程
活動一:生活中實例,概括出數列的概念
1.背景引入:
觀察以下情境:
情境1:各年樹木的枝干數:1,1,2,3,5,8,...情境2:某彗星出現的年份:1740,1823,1906,1989,2072,...
情境3:細胞分裂的個數:1,2,4,8,16,...情境4:A同學最近6次考試的名次17,18,5,8,10,8
情境5:奇虎360最近一個周每日的收盤價:
問題1:以上各情境中都有一系列的數,你看了這些數,有什么感受?
或者有什么共同特征?
共同特點:
(1)排成一列,可以表達信息
(2)順序不能交換,否則意義不一樣.
設計思想:通過例子,學生感受到數列在現實生活中是大量存在的,一列數的順序是蘊含信息的,從而感受到數列的有序性。
2.數列的概念
(1)數列、項的定義:
通過上述的例子,讓學生思考以上一列數據共同的特征,從而歸納出數列的定義:
按照一定次序排列的一列數稱為數列,數列中的每一個數叫做這個數列的項。問題2:能否用準確的語言給我描述一下情境4中的數列?
設計思想:通過讓學生描述,學生再次體會數列中除了數之外,還蘊含著重要的信息:序號。
問題3:這兩個數都是8,表示的含義是否一樣?
不一樣,第四項,第六項,即每一項結合序號才有意義,所以,描述數列的項時必須包含位置信息,即序號。
排在第一位的叫首項,排在第二位的叫第二項……排在第n位的數
問題4:根據對數列的理解,你能否舉出數列的例子?
答:我校高一年級各班的人數。
問題5:能否抽象出數列的一般形式?
a1,a2,a3,...,an,...,記為?an?
(2)數列與集合的區別
問題6:數列是集合嗎?
通過與集合的特點進行對比,更清楚的數列的特點。
讓學生與前一章學習的集合做比較,可以更清楚的了解到數列的本質性的定義。也符合建構主義的舊知基礎上形成新知的有效學習。
(3)數列的分類?能不能不講?
活動二:思考數列的表示——通項公式
3.通項公式的概念
問題7:對于上述情境中的數列,有沒有更簡潔的表示方式?
學生活動:學生可能會用序號n來表示,問學生為什么用n來表示,引出通項公式的概念
一般地,如果數列?an?的第n項與序號n之間的關系可以用一個公式來表示.那么這個公式叫做這個數列的通項公式.
4.通項公式的存在性
問題8:是否任意一個數列都能寫出通項公式?
寫出通項公式
活動三:用函數的觀點看待數列
5.數列也是函數
問題9:在數列?an?中,對于每一個正整數n(或n??1,2,...,k?),是不是都有一個數an與之對應?
問題10:數列是不是函數?
通過前鋪墊,學生觀察數列的項與它數列中的序號之間的對應關系,讓學生理解數列是函數。
把序號看作看作自變量,數列中的項看作隨之變動的量,用函數的觀點來深化數列的概念。
6.用函數的觀點看待數列
問題11:所以,除了用解析式表示數列,還有哪些方法?
再從函數的表示方法過渡到數列的三種表示方法:列表法,圖象法,通項公式法。學生通過觀察發現數列的圖象是一些離散的點。
例2.已知數列?an?的通項公式,寫出這個數列的前5項,并作出它的圖象:(?1)nn(1)an?;(2).an?nn?12
問題12:數列的圖象的特點是什么?
數列的圖象是一些孤立的點。
通過學生觀察數列的項與它數列中的序號之間的對應關系,讓學生理解數列是以特殊的函數,再從函數的表示方法過度到數列的三種表示方法:列表法,圖象法,數列的通項。學生通過觀察發現數列的圖象是一些離散的點。最后通過通項求數列的項,進而升華到觀察數列的前幾項寫出數列的通項。
【課堂小結】
1.數列的概念;
2.求數列的通項公式的要領.
萬能教案模板高中數學篇11
一、教學背景
《同角三角函數基本關系式》是人教版高中數學必修第四冊第一章第二節中的內容。本節課的內容在教材中有著承上啟下的作用,是在學習了任意角和弧度,并了解正弦、余弦、正切的基本概念之后進行教學的,同時同角三角函數的基本關系也為之后學習兩角和差公式奠定了基礎,起著銜接作用。運用同角三角函數關系,能夠更好的解決有關三角函數中求同角的其他三角函數值使解題更方便。學生在獲得三角函數定義的過程中已經充分認識到了借助單位圓、利用數形結合思想是研究三角函數的重要工具。本節課內容中所體現的數學思想與方法在整個中學數學學習中起重要作用。
高中學生已經具備了初等代數、初等幾何的相關知識,以及一定的抽象思維能力和邏輯推理能力。學生已經比較熟練的掌握了三角函數定義的兩種推導方法,從方法上看,學生已經對數形結合,猜想證明有所了解。從學習情感方面看,大部分學生愿意主動學習。從能力上看,學生主動學習能力、探究能力較弱。因而通過本節課的學習,學生能較好地培養學生的思維能力、推理能力、探究能力及創新意識。
根據新課標的要求,以及對教材和學情的分析,我確立了如下三維教學目標:
1、知識與技能目標:掌握三種基本關系式之間的聯系,熟練掌握已知一個角的三角函數值求其它三角函數值的方法。
2、過程與方法目標:牢固掌握同角三角函數的八個關系式,并能靈活運用于解題,提高學生分析、解決三角的思維能力,能靈活運用同角三角函數關系式的不同變形,提高三角恒等變形的能力。
3、情感與態度目標:通過用數學知識解決實際問題,讓學生體會數學與自然及人類社會的密切聯系,激發學生學習數學的興趣,增強學生學習數學的信心。
根據本節課的地位和作用以及新課程標準的具體要求,確定本節課的重點為:同角三角函數基本關系式sin2α+cos2α=1;tanα=sinα/cosα的運用。教學難點為:理三角函數值的符號的確定,同角三角函數的基本關系式的變式應用。
二、活動評價
在課堂教學過程中,我將對學生的學習情況進行及時而有效的評價。注重課程中的過程性評價,無論是在學生開始遇到問題、產生疑惑、給出猜想的時候,還是在逐步思考、交流、探索的教學過程中,我都會注重對于學生學習成果的評價。比如,在課堂討論較難理解的問題時,我將先請一位平時善于解決數學問題的學生來回答,并請其他同學對其進行評價,然后再請大家給出不同的意見,從而形成良性的互動,在學生們的思維碰撞之中,正確、完善的結論將自然形成。從始至終,我都將貫徹以學生為主體、教師為主導的教學思想。
三、課程設計
在新課改理念的指導下,針對本課的教學目標和重難點,我將采用故事法、探究法、自主學習和合作探究等教學法,先從一個情境問題出發,然后引導學生循序漸進地對一組問題進行思考和探究,逐步歸納總結出同角三角函數的基本關系式,并在期間采用學生自評、小組互評、教師評價等多種方式,培養學生積極主動參與學習的興趣。下面我將詳細闡述本節課的教學過程。
1、趣味導入:上課伊始,我會通過多媒體講述“蝴蝶效應”的故事,引導學生理解事物是普遍聯系的觀點,如果說南美亞馬遜雨林中的一只蝴蝶與北美德克薩斯的龍卷風這兩種看來是毫不相干的事物,都會有這樣的聯系,那么同一個角的三角函數應當也會有著非常密切的關系。通過這樣的故事導入,能夠激發學生的學習興趣和探索熱情,活躍其思維,為本節課的學習埋下伏筆。
2、溫故知新:在這一環節,我將引導學生回顧三種常見三角函數的概念,單位圓中的任意角概念,以及初中學段學習的同角三角函數的兩個基本關系式,進而引導學生思考如何證明任意角的三角函數也具備相應的基本關系。在這個過程中,我會請不同層次的學生起來回答,并請其他學生進行補充,引導全體學生進行復習和思考。學生依據以往證明三角函數平方關系的思路,能夠較快想到利用單位圓中的勾股定理關系,證明得到sin2α+cos2α=1,同樣的,根據任意角的正切函數定義,得到tanα=sinα/cosα。
接下來,我將引導學生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)學生可能會躍躍欲試,先用平方關系式計算余弦值,但卻會遇到開方時判別正負號的問題,于是才會根據α是第二象限角這個條件進行判斷。這時我將會引導學生學會先判斷任意角的區間及其三角函數的符號,再利用公式進行計算的解題思路。這樣學生就能夠更輕松地探索出例2的解答方法。例2當中,由于根據余弦值的范圍,確定α可能在第二或第三象限出現,于是學生就能夠想到采用分類思想進行解答。通過學生的自主思考和我的適當引導,可以自然而然地突破本課的難點。
3、歸納總結
經過前面的師生共同參與的探究討論,就逐步歸納總結出了同角三角函數的基本關系式。在這個過程中,我會根據不同學生的特點,分別請他們發言,并請其他同學進行補充,在師生互動中,共同推導出結論,這種方法既可以有效地突出本課的重點,又自然而然地突破了本課的難點。
4、實踐應用
為鞏固所學知識,我會從教材中分梯度選取習題,給學生進行課堂練習,并請2-3位同學在黑板上完成,在練習后我會進行及時講解。
在布置作業時,為了使所有學生都能夠根據自身情況鞏固所學知識,我將布置一類“必做題”和一類“探究題”,其中“探究題”是提供給那些學有余力的學生在課余時間完成的,幫助其拓展思維,培養興趣。
5、課程總結
本節課的內容是極富探索性,我通過提問式復習和情境問題導入,學生產生好奇心和探索熱情。接著,以學生為主體,我來引導學生根據已學的知識和方法,循序漸進地進行探究,逐步歸納總結出同角三角函數的基本關系式,從而自然地完成本課的教學過程,同時幫助學生體會數形結合的思想方法。
在板書設計方面,我會用簡潔、工整的方式給出相關探究問題,同時以多媒體輔助展示平移動畫,便于學生進行觀察和探究。
四、教學體會
本節課我主要采用的是“引導發現、合作探究”的教學方法,以學生熟知的足球運動為情境引入新課,以問題為載體,以師生合作探究為主線,以思維訓練為核心,以能力發展為目標,充分調動一切可利用的因素,激發學生的參與意識,使學生經歷知識的形成、發展和應用的過程,在和諧、愉悅的氛圍中獲取知識,掌握方法。整個教學中既突出了學生的主體地位,又發揮了教師的指導作用。在課堂隨機提問以及討論結果的過程中,我采用多層次多角度的評價方式,不僅能促使學生思考問題,掌握學習知識的技巧和方法,還能調動學生積極性,激發課堂氣氛。
萬能教案模板高中數學篇12
2。2。1等差數列學案
一、預習問題:
1、等差數列的定義:一般地,如果一個數列從起,每一項與它的前一項的差等于同一個,那么這個數列就叫等差數列,這個常數叫做等差數列的,通常用字母表示。
2、等差中項:若三個數組成等差數列,那么A叫做與的,
即或。
3、等差數列的單調性:等差數列的公差時,數列為遞增數列;時,數列為遞減數列;時,數列為常數列;等差數列不可能是。
4、等差數列的通項公式:。
5、判斷正誤:
①1,2,3,4,5是等差數列;()
②1,1,2,3,4,5是等差數列;()
③數列6,4,2,0是公差為2的等差數列;()
④數列是公差為的等差數列;()
⑤數列是等差數列;()
⑥若,則成等差數列;()
⑦若,則數列成等差數列;()
⑧等差數列是相鄰兩項中后項與前項之差等于非零常數的數列;()
⑨等差數列的公差是該數列中任何相鄰兩項的差。()
6、思考:如何證明一個數列是等差數列。
二、實戰操作:
例1、(1)求等差數列8,5,2,的第20項。
(2)是不是等差數列中的項?如果是,是第幾項?
(3)已知數列的公差則
例2、已知數列的通項公式為,其中為常數,那么這個數列一定是等差數列嗎?
例3、已知5個數成等差數列,它們的和為5,平方和為求這5個數。
萬能教案模板高中數學篇13
高中一年級的新同學們,當你們踏進高中校門,漫步在優美的校園時,看見老師嚴謹而熱心的教學和師兄、師姐深切的關懷時,我想你們會暗暗決心:爭取學好高中階段的各門學科。在新的高考制度“3+綜合”普遍吹散全國大地之時,代表人們基本素質的“3”科中,數學是最能體現一個人的思維能力,判斷能力、反應敏捷能力和聰明程度的學科。數學直接影響著國民的基本素質和生活質量,良好的數學修養將為人的一生可持續發展奠定基礎,高中階段則應可能充分反映學習者對數學的不同需求,使每個學生都能學習適合他們自己的數學。
一、高中數學課的設置
高中數學內容豐富,知識面廣泛,高一年級上學期學習第一冊(上):第一章集合與簡易邏輯;第二章函數;第三章數列。高一年級下學期學習第一冊(下):第四章三角函數;第五章平面向量。高二年級上學期學習第二冊(上):第六章不等式;第七章直線和圓的方程;第八章圓錐曲線方程。高二年級下學期學習第二冊(下):第九章直線、平面、簡單幾何體;第十章排列、組合和概率。高二結束將有數學“會考”。高三年級文科生學習第三冊(選修1):第一章統計;第二章極限與導數。高三年級理科生學習第三冊(選修2):第一章概率與統計;第二章極限;第三章導數;第四章復數。高三還將進行全面復習,并有重要的“高考”。
二、初中數學與高中數學的差異。
1、知識差異。初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是“0-1800”范圍內的,但實際當中也有7200和“-300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》(第九章直線、平面、簡單幾何體),將在三維空間中求角和距離等。
還將學習“排列組合”知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,(=6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答:=3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=--1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以后的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課后老師布置作業,然后通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握后再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其后半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由于學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那么就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變量的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們采用對方程ax2+bx+c=0(a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數學思想。
三、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、有良好的學習興趣
兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會準確。
2、建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的`條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。
平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四、其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握后再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是采用蘊含披露的方式將數學思想溶于數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是的數是_____.②從數軸角度理解:什么樣的兩點表示數是互為相反數的。(關于原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做“小老師”,形成數學學習“互助組”。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學后忘。
7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類
同學們在高中有優美的學習環境,有一群樂于事業的熱心教師,全體教師經驗豐富,他們甘愿為你們做鋪路石直至你們走進高等學校大門。我們數學組的全體教師一定會使你們成為數學學習的成功。
萬能教案模板高中數學篇14
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
教學過程:
一、閱讀下列語句:
1)全體自然數0,1,2,3,4,5,
2)代數式
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學生
5)本校實驗室的所有天平
6)本班級全體高個子同學
7)著名的科學家
上述每組語句所描述的對象是否是確定的?
二、
1)集合:
2)集合的元素:
3)集合按元素的個數分,可分為1)__________2)_________
三、集合中元素的三個性質:
1)___________2)___________3)_____________
四、元素與集合的關系:1)____________2)____________
五、特殊數集專用記號:
1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______4)有理數集______5)實數集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
1)地球上的四大洋構成的集合;
2)函數的全體值的集合;
3)函數的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數組成的集合;
8)所有正偶數組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設,,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習:
例6、設含有三個實數的集合既可以表示為,也可以表示為,則的值等于___________
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結:
作業班級姓名學號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________。
4.在(1)難解的題目,(2)方程在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________。
5.設集合a=,b=,
c=,d=,e=。
其中有限集的個數是____________。
6.設,則集合中所有元素的和為
7.設x,y,z都是非零實數,則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設a,b為整數,把形如a+b的一切數構成的集合記為m,設,試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數a的值。
萬能教案模板高中數學篇15
一、教學目標
知識與技能:
理解任意角的概念(包括正角、負角、零角)與區間角的概念。
過程與方法:
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區間角的集合的書寫。
情感態度與價值觀:
1、提高學生的推理能力;
2、培養學生應用意識。
二、教學重點、難點:
教學重點:
任意角概念的理解;區間角的集合的書寫。
教學難點:
終邊相同角的集合的表示;區間角的集合的書寫。
三、教學過程
(一)導入新課
1、回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角。
②角的第二種定義是角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形。
(二)教學新課
1、角的有關概念:
①角的定義:
角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形。
②角的名稱:
注意:
⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;
⑵零角的終邊與始邊重合,如果α是零角α=0°;
⑶角的概念經過推廣后,已包括正角、負角和零角。
⑤練習:請說出角α、β、γ各是多少度?
2、象限角的概念:
①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?