2024年初中七年級上冊數學教案范本
作為一無名無私奉獻的教育工作者,有必要進行細致的教案準備工作,那么七年級上冊數學教案怎么寫呢?以下是小編整理的一些關于七年級上冊數學教案,僅供參考。
2024年初中七年級上冊數學教案范本篇1
內容:整式的乘法—單項式乘以多項式P58-59
課型:新授
學習目標:
1、在具體情景中,了解單項式和多項式相乘的意義。
2、在通過學生活動中,理解單項式和多項式相乘的法則,會用它們進行計算。
3、培養學生有條理的思考和表達能力。
學習重點:單項式乘以多項式的法則
學習難點:對法則的理解
學習過程
1.學習準備
1.敘述單項式乘以單項式的法則
2.計算
(1)(-a2b)?(2ab)3=
(2)(-2x2y)2?(-xy)-(-xy)3?(-x2)
3、舉例說明乘法分配律的應用。
2.合作探究
(一)獨立思考,解決問題
1、問題:一個施工隊修筑一條路面寬為nm的公路,第一天修筑am長,第二天修筑長bm,第三天修筑長cm,3天工修筑路面的面積是多少?
結合圖形,完成填空。
算法一:3天共修筑路面的總長為(a+b+c)m,因為路面的'寬為bm,所以3
天共修筑路面m2.
算法二:先分別計算每天修筑路面的面積,然后相加,則3天修路面m2.
因此,有=。
3.你能用字母表示乘法分配律嗎?
4.你能嘗試單項式乘以多項式的法則嗎?
(二)師生探究,合作交流
1、例3計算:
(1)(-2x)(-x2?x+1)(2)a(a2+a)-a2(a-2)
2、練一練
(1)5x(3x+4)(2)(5a2?a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2?x-1)
(4)(?a)(-2ab)+3a(ab-b-1))
(三)學習
對照學習目標,通過預習,你覺得自己有哪些方面的收獲?有什么疑惑?
(四)自我測試
1、教科書P59練習3,結合解題,單項式乘以多項式的幾何意義。
2、判斷題
(1)-2a(3a-4b)=-6a2-8ab( )
(2)(3x2-xy-1)?x=x3-x2y-x( )
(3)m2-(1-m)=m2--m( )
3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于()
A.-1B.0C.1D.無法確定
4、計算(20__賀州中考)
(-2a)?(a3-1)=
5、(3m)2(m2+mn-n2)=
(五)應用拓展
1、計算
(1)2a(9a2-2a+3)-(3a2)?(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一個梯形的上底長(4m+3n)cm,下底長(2m+n)cm,高為3m2ncm,求此梯形的面積。
3、一塊邊長為xcm的正方形地磚,因需要被裁掉一塊2cm寬的長條,為剩下部分面積是多少?
2024年初中七年級上冊數學教案范本篇2
教學目的:
(一)知識點目標:
1.了解正數和負數在實際生活中的應用。
2.深刻理解正數和負數是反映客觀世界中具有相反意義的理。
3.進一步理解0的特殊意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量。
2.熟練地用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:能用正、負數表示具有相反意義的量。
教學難點:進一步理解負數、數0表示的量的意義。
教學方法:小組合作、師生互動。
教學過程:
創設問題情境,引入新課:分小組派代表,注意數學語言規范。
1.認真想一想,你能用學過的知識解決下列問題嗎?
某零件的直徑在圖紙上注明是,單位是毫米,這樣標注表示零件直徑的標準尺寸是毫米,加工要求直徑可以是毫米,最小可以是毫米。
2.下列說法中正確的( )
A、帶有“一”的數是負數;B、0℃表示沒有溫度;
C、0既可以看作是正數,也可以看作是負數。
D、0既不是正數,也不是負數。
[師]這節課我們就來繼續認識正、負數及它們在生活中的實際意義,特別是數0。
講授新課:
例1.仔細找一找,找了具有相反意義的量:
甲隊勝5場;零下6度;向南走50米;運進糧食40噸;乙隊負4場;零上10度;向北走20米;支出1000元;收入3500元。
例2(1)一個月內,小明的`體重增加2千克,小華體重減少1千克,小強體重無變化,寫出他們這個月的體重增長值;
(2)20__年下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,
英國減少3.5%,意大利增長0.2%,中國增長7.5%。
寫出這些國家20__年商品進出口總額的增長率。
例3.下列各數中,哪些是正數,哪些是負數?哪些是正整數,哪些是負整數?哪些是正分數(小數),哪些是負分數(小數)?
例4.小紅從阿地出發向東走了3千米,記作+3千米,接著她又向西走3千米,那么小紅距阿地多少千米?
復習鞏固:練習:課本P6練習
課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1的第3、6、7、8題。
活動與探究:
海邊的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潛水艇在海平面下30米處,現以海邊堤岸為基準,將其記為0米,那么附近建筑物及潛水艇的高度各應如何表示?
2024年初中七年級上冊數學教案范本篇3
【學習目標】:
1、掌握正數和負數概念;
2、會區分兩種不同意義的量,會用符號表示正數和負數;
3、體驗數學發展是生活實際的需要,激發學生學習數學的興趣。
【重點難點】:正數和負數概念
【教學過程】:
一、知識鏈接:
1、小學里學過哪些數請寫出來:
2、閱讀課本P2三幅圖(重點是三個例子,邊閱讀邊思考)回答下面提出的問題:
3、在生活中,僅有整數和分數夠用了嗎?有沒有比0小的數?如果有,那叫做什么數?
二、自主學習
1、正數與負數的產生
(1)、生活中具有相反意義的量
如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。請你也舉一個具有相反意義量的例子:。
(2)負數的產生同樣是生活和生產的需要
2、正數和負數的表示方法
(1)一般地,我們把上升、運進、零上、收入、前進、高出等規定為正的',而與它相反的量,如:下降、運出、零下、支出、后退、低于等規定為負的。正的量就用小學里學過的數表示,有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學學過的數前面放上“—”(讀作負)號來表示,如上面的—3、—8、—47。
(2)活動:兩個同學為一組,一同學任意說意義相反的兩個量,另一個同學用正負數表示.
(3)閱讀P2的內容
3、正數、負數的概念
1)大于0的數叫做,小于0的數叫做。
2)正數是大于0的數,負數是的數,0既不是正數也不是負數。
【課堂練習題】:
1.P3第1,2題(直接做在課本上)。
2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應記作_______,-4萬元表示________________。
3.已知下列各數:?13,?2,3.14,+3065,0,-239;54
則正數有_____________________;負數有____________________。
4.下列結論中正確的是________()
A.0既是正數,又是負數
C.0是最大的負數
【要點歸納】:
正數、負數的概念:
(1)大于0的數叫做,小于0的數叫做。
(2)正數是大于0的數,負數是的數,0既不是正數也不是負數。
【拓展訓練】:
1.零下15℃,表示為_________,比O℃低4℃的溫度是_________。
2.地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,
其中最高處為_______地,最低處為_______地.
3.“甲比乙大-3歲”表示的意義是______________________。
4.如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負數分別表示潛水艇和鯊魚的高度。
【課后作業】P5第1、2題
2024年初中七年級上冊數學教案范本篇4
【教學目標】
引導學生通過常規分析,得出解題思路,經歷提出問題,自探問題,應用知識的過程,自主總結出解題辦法;
【教學難點】
找出題目中的可有可無的已知條件,說一說為什么可以這樣認為
【教學過程】
問:以前學過的有關路程,時間,和速度之間的關系是怎么樣的?你能寫出它們之間的關系嗎?
出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍。現在汽車從甲地到乙地需要多少小時?
分析:要求現在汽車從甲地到乙地需要多少小時,那么先要求出汽車現在的速度,而汽車現在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時',可以求出汽車原來的速度。
學生寫出解答過程:汽車原來的速度:352÷1=32(千米);汽車現在的速度:32×2.5=80(千米)
現在的時間:352÷80=4.4(小時)
問:用比例的思路該怎么樣理解這道題目呢?
分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現在的速度是原來的2.5倍,所以原來的時間是現在的`
2.5倍。即:11÷2.5=4.4(小時)。
這樣解答使得`甲乙兩地公路全長352千米'成了多余條件,但是又不影響解答問題。
【我們來探索】
一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?
【總結】
在解答應用題時要善于應用不同的思路和技巧,巧解問題
【作業】
丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?
丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?
2024年初中七年級上冊數學教案范本篇5
教學目標:
1、知道有理數加法的意義和法則
2、會用有理數加法法則正確地進行有理數的加法運算
3、經歷有理數加法法則的探究過程,體會分類和歸納的數學思想方法
教學重點:
有理數加法則的探索及運用
教學難點:
異號兩數相加的法則的理解及運用
教學過程:
一、創設情境
展示足球賽圖片,你知道足球賽中“凈勝球”是怎么回事嗎?
(學生口答,教師介紹凈勝球的算法:只要把各場比賽的結果相加就可以得到,由此揭示課題。)
二、探求新知
1、甲、乙兩隊進行足球比賽,
(1)、如果上半場贏了3球,下半場又贏了2球,那么全場累計凈勝幾球?
(2)、如果上半場贏了3球,下半場輸了2球,那么全場累計凈勝幾球?
足球比賽中贏球個數與輸球個數是一對相反意義的量.若規定贏球為正,輸球為負,例如贏3球記為“+3”,輸2球記為“-2”,你能把上述結果用加法算式表示出來嗎?
(學生根據生活經驗得到兩種情況下的.凈勝球數,從而列出算式:(+3)+(+2)=+5;(+3)+(-2)=+1,教師板書。)
(3)、除了上面所說的“贏了再贏”,“先贏后輸”,你還能說出其它可能的幾種情況并用加算式表示嗎?
(引導學生聯系生活實際思考輸贏球其它可能的情況,盡可能完整地說出所有的可能,由此感受兩個有理數相加的各種情況,讓學生自由發言,相互補充,教師板書算式:(-3)+(+2)=-1,(-3)+(-2)=-5,(-3)+0=-3,0+(+2)=+2,教師還可根據學生回答情況補充:上半場贏了3球,下半場輸了3球;上半場打平,下半場也打平,最后的凈勝球情況,由學生說出結果并列出算式:(+3)+(-3)=0,0+0=0)
2、你能舉出一些運用有理數加法的實際例子嗎?
(學生列舉實例并根據具體意義寫出算式)
3、學生活動:
(1)、把筆尖放在數軸原點處,先向正方向移動3個單位長度,再向正方向移動2個單位長度,這時筆尖的位置表示什么數?你能用數軸和加法算式表示以上過程及結果嗎?
(2)、把筆尖放在數軸原點個單位長度,再向負方向移動2個單位長度,這時筆尖的位置表示什么數?你能用數軸和加法算式表示以上過程及結果嗎?
(3)、你還能再做一些類似的活動,并寫出相應的算式嗎?
(教師示范活動(1)的操作過程,學生列出算式并完成(2)(3),得到一組算式,教師板書。這一活動目的是讓學生從“形”的角度,直觀感受有理數的加法法則。)
4、歸納法則:
觀察上述算式,和小學學過的加法運算有什么區別?你能歸納出有理數的加法法則嗎?
(由前面所學的內容學生已經知道:有理數由符號和絕對值兩部分組成,所以兩個有理數的相加時,確定和時也需要分別確定和的符號和絕對值,教師可引導學生對照情境中輸贏球的情況分別探索和的符號和絕對值如何確定,學生相互交流,自由發言,不斷完善。通過探索有理數加法法則的過程,學生體會分類和歸納的數學思想方法。)
5、例題精講:
例1、計算
(1)、(-5)+(-3)(2)、(-8)+(+2)(3)、(+6)+(-4)
(4)、5+(-5);(5)、0+(-2);(學生口答計算結果,并對照法則說說是如何確定和的符號和絕對值的,教師板書解題過程,讓學生體會“運算有據”。)
解:(1)、(-5)+(-3)
=-(5+3)(同號兩數相加,取相同的符號,并把絕對值相減)
=-8
(2)、(-8)+(+2)
=-(8-2)(異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。)
=-6
(4)、5+(-5);
=0(互為相反的兩數之和為0)
6、訓練鞏固:
1、p33練一練2
(學生利用撲克完成本題,通過游戲進一步鞏固有理數加法法則,體現“做中學”的新課程理念。)
7、延伸拓展:
(1)、一個數是2的相反數,另一個數的絕對值是5,求這兩個數的和
(2)、在小學里,計算兩個數相加時,它們的和總是小于任何一個加數,學了有理數的加法法則后,你認為這個結論還成立嗎?請你舉例說明
(這兩題都具有一定的挑戰性,第(1)題可讓學生進一步體會分類的數學思想方法。第(2)題具有開放性,可讓學生在探索的過程中進一步理解法則。)
三、課堂小結:
學生回顧本節課所學內容,談談自己對有理數加法法則的理解及如何進行有理數加法運算。
四、布置作業:
1、課本p41第1題
2、列舉一些生活中運用有理數加法的實際例子,并相互交流。
2024年初中七年級上冊數學教案范本篇6
一、教材分析
(一)教材的地位和作用
本節內容是一元一次方程應用的延伸與拓展,它進一步讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程,同時又滲透了函數與不等式的思想,為以后內容學習奠定了必要的數學基礎,本節內容具有承上啟下的作用.學生能深刻地認識到方程是刻畫現實世界有效的數學模型,領悟到“方程”的數學思想方法.總之,本節內容無論在知識上還是在數學思想方法上,都是十分很好的素材,能很好培養學生的探索精神、應用意識以及創新能力.
(二)教材的重難點
本節的重點是探索并掌握列一元一次方程解決實際問題的方法.而方程的建模思想學生還是初步接觸,尋找相等關系對學生來說仍相當困難,所以確定“找出已知量與未知量之間的關系,尤其是相等關系”為本節的難點之一,列方程解應用題的最終目標是運用方程的解對客觀現實作出合理的解釋,這是本節的難點之二.
二、教學目標分析
(一)知識技能目標
1.目標內容
(1) 結合生活實際,會在獨立思考后與他人合作,結合估算和試探,列出一元一次方程解決本節的三個實際問題,并能解釋結果的實際意義及其合理性.
(2) 培養學生建立方程模型來分析、解決實際問題的能力以及探索精神、合作意識.
2.目標分析
(1) 本節的內容就是通過列方程、解方程來解決實際問題,這是必須掌握的知識,估算與試探的思維方法也很重要,這是發現和解決問題的有效途徑.
(2) 七年級的學生對數學建模還比較陌生,建模能突出應用數學的意識,而探索精神和合作意識又是課標所大力倡導的,因而必須加強培養學生這方面的能力.
(二)過程目標
1.目標內容
在活動中感受方程思想在數學中的作用,進一步增強應用意識.
2.目標分析
利用方程解決問題是有用的數學方法,學生在前兩節的數學活動中,有了一些初步的經驗,但是更接近生活,更富有挑戰性的問題則需要師生合作,探索解決.
(三)情感目標
1.目標內容
(1) 在探索中獲得成功的體驗,激發學生學習數學的熱情,享受與他人合作的樂趣,建立自信心.
(2) 通過對實際問題的解決,進一步體會“數學來源于生活,且服務于生活”的辯證思想.
2.目標分析
七年級學生的年齡特征決定了他們好奇心強、思想活躍、求知心切.利用教材培養學生良好的學習習慣、方法和品質,這是落實新課標倡導的教育理念的關鍵.
三、教材處理與教法分析
本節內容擬定兩課時完成,今天說課的內容是第一課時(探究Ⅰ、探究Ⅱ).根據本節課的特點及七年級學生的心理特征和認知特征,本節課采用探索發現法進行教學,在活動中充分體現學生是學習的主人,教師是學習的組織者、引導者、合作者.本課借助多媒體輔助教學,給學生以直觀形象的演示,增強感性認識,增強教學效果.課中以設疑提問、分組活動等方式,激發學生的興趣,引導學生自主探索與合作交流,主動獲得知識.
四、教學過程分析
(一)教學過程流程圖
探究Ⅰ
(二)教學過程Ⅰ
(以探究為主線、形式多樣化)
1.問題情境
(1) 多媒體展示有關盈虧的新聞報道,感受生活實際.
(2) 據此生活實例,展示探究Ⅰ,引入新課.
考慮到學生不完全明白“盈利”、“虧損”這樣的商業術語,故針對性地播放相關新聞報道,然后引出要探索的問題Ⅰ.
2.討論交流
(1) 學生結合自己的生活實際,交流對“盈利”、“虧損”含義的理解.
(2) 學生交流后,老師提出問題:某件商品的進價是40元,賣出后盈利25%,那么利潤是多少?如果賣出后虧損25%,利潤又是多少?(利潤是負數,是什么意思?)
(3) 要求學生對探究Ⅰ中商店的盈虧進行估算,交流討論并說明理由.在討論中學生對商店盈虧可能出現不同的觀點,因此引導學生用數學方法解決問題,統一認識.
(4) 師生互動,要知道究竟是盈是虧,必須先知道什么?從而引出要算出每件衣服的進價.
讓學生討論盈利和虧損的含義,理解其概念,建立感性認識;乍一看,大多數學生可能在大體估算后得到不虧不盈,直覺上也是如此,但要解決實際問題,還要知其原價(未知量),從這一分析引入未知量,為后面建立模型,做了必要的鋪墊.
3.建立模型
(1) 學生自主探索,尋找已知量與未知量之間的關系,確定相等關系.
(2) 學生分組,根據找出的相等關系列出方程,其中一組計算盈利25%的衣服的進價,另一組計算虧損25%的衣服的進價.
(3) 師生互動:①兩件衣服的進價和為 ;②兩件衣服的售價和為 ;③由于進價 售價,由此可知兩件衣服的盈虧情況.
(教師及時給出完整的解答過程)
學生分組、計算盈虧;教師參與、適當提示;師生互動、得到決策.這樣設計,讓學生體會到合作交流、互相評價、互相尊重的學習方式,有利于學生知識的形成與發展,也有利于學生健康人格的養成.這樣設計易于突出重點,突破難點,鞏固應用一元一次方程作工具來解決實際問題的方法,也很好地讓學生從已有的經驗中、活動中,有意義地構建自己的知識結構,獲得富有成效的學習體驗.
4.小結
一個感悟:估算與主觀判斷往往與實際情況大相徑庭,需要我們通過準確的計算來檢驗自己的判斷.
培養學生科學的學習態度與嚴謹的學習作風.
探究Ⅱ
(三)教學過程Ⅱ
1.在燈具店選購燈具時,由于兩種燈具價格、能耗的不同,引起矛盾沖突.
恰當的問題情境激發學生探索的欲望,同時讓學生體會到數學來源于生活,又服務于生活的實用性.
啟發:選擇的目的是節省費用,費用又是由哪些因素決定的?學生討論得出結論:
2.列代數式
費用=燈的售價+電費
電費=0.5×燈的功率(千瓦)×照明時間(時)
在此基礎上,用t表示照明時間(小時).要求學生列出代數式表示這兩種燈的費用.
節能燈的費用(元):60+0.5×0.011t.
白熾燈的費用(元):3+0.5×0.06t.
分析各個量之間的關系,列出代數式,為后面列方程,并進一步探索提供了基礎.
3.特值試探
具體感知
學生分組計算:
t=1000、2000、2500、3000時,這兩種燈具的使用費用,填入下表:
時間(小時)
1000
2000
2500
3000
節能燈的費用(元)
白熾燈的費用(元)
2024年初中七年級上冊數學教案范本篇7
教學目標
【知識與能力目標】
1、鞏固理解有理數的概念;
2、掌握數軸的意義及構成特點,明確其在實際中的應用;
3、會用數軸上的點表示有理數。
教學重難點
【教學重點】
數軸的意義及作用。
【教學難點】
數軸上的點與有理數的直觀對應關系。
課前準備
《數學》人教版七年級上冊,自制課件
教學過程
一、探索新知(投影展示)
問題在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.5m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情景。
學生結合上述問題分組討論,明確以下問題:
1、怎樣用數簡明地表示這些樹、電線桿與汽車站的相對位置關系(體現距離、方向)?
2、舉例說明生活中類似的事例;
3、什么叫數軸?它有哪幾個要素組成?
4、數軸的用處是什么?
5、你會畫數軸嗎并應用它嗎?
二、例題分析
三、鞏固訓練
課本p10練習
自我檢測
(1)數軸的三要素是;
(2)數軸上表示-5的點在原點的側,與原點的距離是個長度單位;
(3)數軸上表示5與-2的兩點之間距離是單位長度,有個點;
(4)如圖,a、b為有理數,則a0,b0,ab
四、課堂小結
(1)數軸概念:規定了原點、正方向、單位長度的直線叫做數軸。
(2)數軸的三要素:原點、正方向、單位長度。
(3)數學思想:數形結合的思想。
五、作業
1、課本14頁習題1、2
2、完成“自我檢測”
3、個性補充
⑴畫一條數軸,并表示出如下各點:±0.5,±0.1,±0.75。
⑵畫一條數軸,并表示出如下各點:1000,5000,-2000。
⑶在數軸上標出到原點的距離小于3的整數。
⑷在數軸上標出-5和+5之間的所有整數。
2024年初中七年級上冊數學教案范本篇8
教學目標
1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;
2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;
3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。
教學難點 數軸的概念和用數軸上的點表示有理數
知識重點
教學過程(師生活動) 設計理念
設置情境
引入課題 教師通過實例、課件演示得到溫度計讀數.
問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
(小組討論,交流合作,動手操作) 創設問題情境,激發學生的學習熱情,發現生活中的數學
點表示數的感性認識。
點表示數的理性認識。
合作交流
探究新知 教師:由上述兩問題我們得到什么啟發?你能用一條直線上的點表示有理數嗎?
讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數的直線必須滿足什么條件?
從而得出數軸的三要素:原點、正方向、單位長度 體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。
從游戲中學數學 做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數字”,如果規定第3個同學為原點,游戲還能進行嗎? 學生游戲體驗,對數軸概念的理解
尋找規律
歸納結論 問題3:
1, 你能舉出一些在現實生活中用直線表示數的實際例子嗎?
2, 如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?
3, 哪些數在原點的左邊,哪些數在原點的右邊,由此你會發現什么規律?
4, 每個數到原點的距離是多少?由此你會發現了什么規律?
(小組討論,交流歸納)
歸納出一般結論,教科書第12的歸納。 這些問題是本節課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。
鞏固練習
教科書第12頁練習
小結與作業
課堂小結 請學生總結:
1, 數軸的三個要素;
2, 數軸的作以及數與點的轉化方法。
本課作業
1, 必做題:教科書第18頁習題1.2第2題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1, 數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。
2, 教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
3, 注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。
2024年初中七年級上冊數學教案范本篇9
一、目標
1.用它們拼成各種形狀不同的四邊形,并計算它們的周長。
(鼓勵學生把長方形和等腰三角形拼和成各種圖形,分別計算出它們的周長和面積)
2.教師揭示以上這些工作實際上是在進行整式的加減運算
3.回顧以上過程 思考:整式的加減運算要進行哪些工作?
生1:“去括號”
生2:“合并同類項”
師生小結:整式的加減實際上是“去括號”和“合并同類項”法則的綜合應用,
二、揭示如何進行整式的加減運算
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.教學例二 例2 求2a2-4a+1與-3a2+2a-5的差.
(本題首先帶領學生根據題意列出式子,強調要把兩個代數式看成整體,列式時應加上括號)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3.拓展練習
(1)求多項式2x -3 +7與6x -5 -2的和.
提問:你有哪些計算方法?(可引導學生進行豎式計算,并在練習中注意豎式計算過程中需要注意什么?)
(2)(-3x2 –x +2)+(4x2 +3x -5)
(3)(4a2 -3a )+(2a2 +a -1)
(4)(x2 +5x –2 )-(x2 +3x -22)
(5)2(1-a +a2)-3(2-a –a2)
4.教學例3
先化簡下式,再求值:
(做此類題目應先與學生一起探討一般步驟:
(1)去括號。
(2)合并同類項。
(3)代值)
解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3
=15a2b –5ab2+4ab2 -12a2b)
=3a2b –ab2
三、小結
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.進行化簡求值計算時
(1)去括號。
(2)合并同類項。
(3)代值
3.通過本節課的學習你還有哪些疑問?
四、布置作業
習題4.5 2. (3) ;4. (2);5。
五、課后反思
省略
2024年初中七年級上冊數學教案范本篇10
一、教學目標:
(一)教學知識點
1.與身邊熟悉的 事物做比較 感受百萬分之一等較小的數據 并用科學記數法表示較小的數據.
2 .近似數和有效數字 并按要求取近似數.
3.從統計圖中獲取信息 并用統計圖形象地表示數據.
(二)能力訓練要求
1.體會描述較小 數據的方法 進一步發展數感.
2.了解近似數和有效數字的概念 能按要求取近似數 體會近似數的意義在生活中的作用.
3.能讀懂統計圖中的信息 并能收集、整理、描述和分析數據 有效、形象地用統計圖描述數據 發展統計觀念.
(三)情感與價值觀要求:
1.培養學生用數學的意識和信心 體會數學的應用價值.
2.發展學生的創新能力和克服困難的勇氣.
二、教學重點:
1.感受較小的數據.
2.用科學記數法表示較小的數.
3.近似數和有效數字 并能按要求取近似數.
4.讀懂統計圖 并能形象、有效地用統計圖描述數據.
教學難點:形象、有效地用統計圖描述數據.
教學過程:.創設情景 引入新
三.講授新:請你用熟悉的事物描述 一些較小的數據:大象是世界上最大的陸棲動物 它的體重可達幾噸。世界第一高峰——珠穆朗瑪峰 它的海拔高度約為8848米。
1.哪些數據用科學記數法表示比較方便?舉例說明.
2.用科學記數法表示下列各數:
(1)水由氫原子和氧原子組成 其中氫原子的直徑約為0.000 000 0001米.
(2)生物學家發現一種病毒的長度約為0.000043毫米;
(3)某種鯨的體重可達136 000 000千克;
(4)2003年5月19日 國家郵政局特別發行“萬眾一心 抗擊‘非典’”郵票 收入全部捐給 衛生部門 用以支持抗擊“非典”斗爭 其郵票的發行量為12 500 000枚.
四.小結:我們這節回顧了以下知識:
1.又一次經 歷感受 了百萬分之一 進一步體會描述較小數據的方法:與身邊事物比較 進一步學習了利 用科學記數法表示較小的數據.
2.在實際情景中進一步體會到了近似 數的意義和作用 并按要求取近似數和有效數字.
3.又一次欣賞了形象的統計圖 并從中獲取有用的信息.
(1)根據上表中的數據 制作統計圖表示這些主要河流的河長情況 你的統計圖要盡可能的形象.
(2)從上表中的數據可以看出 河流的河長與流域面積有什么樣的聯系?
(3)在中國地形圖上找出主要河流 你認為河流年徑流量與河流所處的地理位置有關系嗎?
制作形象的統計圖 首先要處理好數據 即從表格中計算出這幾條河流長度的比例 然后選擇最大或最小作為基準量 按比例形象畫出即可.
(1)形象統計圖(略)只要合理即可.
(2)從表中的數據看出 河流越長 其流域面積越大.
(3)河流的年徑流量與河流所處的位置有關系.
五.課后作業:
2024年初中七年級上冊數學教案范本篇11
學習目標:
1、知識技能:進一步理解正、負數及零的意義,熟練掌握正負數的表示方法,會用正、負數表示具有相反意義的量。毛
2、數學思考:體會數學符號與對應的思想。
3、情感態度:師生合作,聯系實際。培養學生的想象能力、理論聯系實際的能力、分析解決問題的能力,培養學生良好的個性品質和學習習慣。
重點:進一步理解正、負數及零表示的量的意義。
難點:理解負數及零表示的量的意義。
課前準備
卷尺或皮尺
教學流程安排
活動1、復習正、負數 從學生已有的知識出發,為進一步學習做好知識準備。
活動2、活動安排 使學生進入問題情境,加深對負數的理解。
活動3、舉例說明 提高解決實際問題的能力。
活動4、鞏固練習 掌握正數和負數。
教學過程設計
活動1
1、 給出一組數,請學生說說哪些是正數、負數。
2、 學生舉例說明正、負數在實際中的應用。
師生行為及設計意圖
通過上一堂課的學習,讓一組同學任意給出一組數,另一組同學找出哪些是正數?哪些是負數?正整數?負分數?復習正、負數的定義。
活動2
1、各組派一名同學進行如下活動:按老師的指令表演,看哪一組獲勝。
2、分小組完成,用卷尺或皮尺量桌子的高度、桌面的長度和寬度,并將它們表示出來。(超出1米的部分用正數表示,不足1米的部分用負數表示。)
師生行為
1、老師說出指令:向前1步,向后3步,向前-2步,向后-2步。學生按老師的指令表演。
2、各小組派一名同學匯報完成的情況。
設計意圖
通過學生的活動,激發學生參與課堂教學的熱情,在活動中鞏固所學的知識。
活動3
問題展示
1、 一個月內,小明體重增加2千克,小華體重減少1千克,小強體重無變化,寫出他們這個月的體重的增長值。
2、 2001年 商品進出口總額比上年的變化情況是:
美國減少6.4%% , 德國增長1.3%,
法國減少2.4% , 英國減少3.5%,
意大利增長0.2 %, 中國增長7.5%,
師生行為及設計意圖
在學生已初步掌握新知識的前提下,由問題1 、2提高學生綜合解決實際問題的.能力。
活動4
1、 P6 練習
2、 總結:這堂課我們學習了那些知識?你能說一說嗎?
3、 作業 P7習題1 .1 4、7、8
師生行為及設計意圖
教師巡視、指導。學生交流、完成練習。對所學知識的鞏固是教學的一個重要環節,這里的練習可以分散進行。
教師引導學生回憶本節課所學內容。學生回憶、交流。教師和學生一起補充完善。教師要努力使學生自己回憶、總結、梳理所學的知識,將所學的知識與以前學過的知識進行緊密聯結,完善認知結構。
學生課后鞏固、提高、發展。
2024年初中七年級上冊數學教案范本篇12
第一課時
教學目的
讓學生通過獨立思考,積極探索,從而發現;初步體會數形結合思想的作用。
重點、難點
1.重點:通過分析圖形問題中的數量關系,建立方程解決問題。
2.難點:找出“等量關系”列出方程。
教學過程
一、復習提問
1.列一元一次方程解應用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據這個等量關系,確定如何設未知數。
(4)當長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發現了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積最大呢?并加以驗證。
實際上,如果兩個正數的和不變,當這兩個數相等時,它們的積最大,通過以后的學習,我們就會知道其中的道理。
三、鞏固練習
教科書第14頁練習1、2。
第l題等量關系是:圓柱的體積=長方體的體積。
第2題等量關系是:玻璃杯中的水的體積十瓶內剩下的水的體積=原來整瓶水的體積。
四、小結
運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯系實際,積極探索,找出等量關系。
五、作業
教科書第16頁,習題6.3.1第1、2、3。
第二課時
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
三課時
教學目的
借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。
重點、難點
1.重點:列一元一次方程解決有關行程問題。
2.難點:間接設未知數。
教學過程
一、復習
1.列一元一次方程解應用題的一般步驟和方法是什么?
2.行程問題中的基本數量關系是什么?
路程=速度×時間 速度=路程 / 時間
二、新授
例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉看望爺爺,在行駛了三分之一路程后,估計繼續乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠?
畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關系是什么?
如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設公共汽車從小張家到火車站要x小時。
設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。
三、鞏固練習
教科書第17頁練習1、2。
四、小結
有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。
四、作業
教科書習題6.3.2,第1至5題。
第四課時
教學目的
1.理解用一元一次方程解工程問題的本質規律;通過對“工程問題”的分析進一步培養學生用代數方法解決實際問題的能力。
2.理解和掌握基本的數學知識、技能、數學思想方法,獲得廣泛的數學活動經驗,提高解決問題的能力。
重點、難點
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
教學過程
一、復習提問
1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全
部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
二、新授
閱讀教科書第18頁中的問題6。
分析:
1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數,因此,設師傅做了x天,則徒弟做(x+1)天,根據等量關系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現由甲獨做10小時;
請你提出問題,并加以解答。
例如 (1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
四、小結
1.本節課主要分析了工作問題中工作量、工作效率和工作時間之間的關系,即 工作量=工作效率×工作時間工作效率= 工作時間
2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
五、作業
教科書習題6.3.3第1、2題。
2024年初中七年級上冊數學教案范本篇13
一、有理數的意義
1.有理數的分類
知識點:大于零的數叫正數,在正數前面加上“﹣”(讀作負)號的數叫負數;如果一個正數表示一個事物的量,那么加上“﹣”號后這個量就有了完全相反的意義;3,,5.2也可寫作+3,+,+5.2;零既不是正數,也不是負數。
2.數軸
知識點:數軸是數與圖形結合的工具;數軸:規定了原點、正方向和單位長度的直線;數軸的三元素:原點、正方向、單位長度,這三元素缺一不可,是判斷一條直線是否是數軸的根本依據;數軸的作用:1)形象地表示數(因為所有的有理數都可以用數軸上的點表示,以后會知道數軸上的每一個點并不都表示有理數),2)通過數軸從圖形上可直觀地解釋相反數,幫助理解絕對值的意義,3)比較有理數的大小:a)右邊的數總比左邊的數大,b)正數都大于零,c)負數都小于零,d)正數大于一切負數
3.相反數
知識點:只有符號不同的兩個數互為相反數;在數軸上表示互為相反數的兩個點到原點的距離相等且分別在原點的兩邊;規定:0的相反數是0。
4.絕對值
知識點:一個數a的絕對值就是數軸上表示數a的點與原點的距離,數a的絕對值記作∣a∣;絕對值的意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,零的絕對值是零,即若a>0,則∣a∣=a.若a=0,則∣a∣=0.若a<0,則∣a∣=﹣a;絕對值越大的.負數反而小;兩個點a與b之間的距離為:∣a-b∣。
二、有理數的運算
1.有理數的加法
知識點:有理數的加法法則:1)同號兩數相加,取相同的符號,并把絕對值相加;2)異號兩數相加,①絕對值相等時,和為零(即互為相反數的兩個數相加得0);②絕對值不相等時,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;3)一個數和0相加仍得這個數。
加法交換律:a+b=b+a;加法結合律:a+b+c=a+(b+c)
多個有理數相加時,把符號相同的數結合在一起計算比較簡便,若有互為相反的數,可利用它們的和為0的特點。
2.有理數的減法
知識點:有理數的減法法則:減去一個數等于加上這個數的相反數,即a-b=a+(-b)。
注意:運算符號“+”加號、“-”減號與性質符號“+”正號、“-”負號統一與轉化,如a-b中的減號也可看成負號,看作a與b的相反數的和:a+(-b);一個數減去0,仍得這個數;0減去一個數,應得這個數的相反數。
3.有理數的加減混合運算
知識點:有理數的加減法混合運算可以運用減法法則統一成加法運算;加減法混合運算統一成加法運算以后,可以把“+”號省略,使算式變得更加簡潔。
4.有理數的乘法
知識點:乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘;任何數和0相乘都得0。
幾個不等于0的數相乘,積的符號由負因數的個數決定;當負因數有奇數個時,積為負;當負因數有偶數個時,積為正。幾個數相乘,有一個因數為0,積就為0。
乘法交換律:ab=ba乘法結合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc
5.有理數的除法
知識點:除法法則1:除以一個數等于乘上這數的倒數,即a÷b==a(b≠0即0不能做除數)。
除法法則2:兩數相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數都得0。
倒數:乘積是1的兩數互為倒數,即a=1(a≠0),0沒有倒數。
注意:倒數與相反數的區別
6.有理數的乘方
知識點:乘方:求n個相同因數的積的運算。乘方的結果叫冪,an中,a叫做底數,n叫做指數。
乘方的符號法則:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數;0的任何次冪都為0。
7.有理數的混合運算
知識點:運算順序:先乘方,再乘除,最后算加減,遇到有括號,先算小括號,再中括號,最后大括號,有多層括號時,從里向外依次進行。
技巧:先觀察算式的結構,策劃好運算順序,靈活進行運算。
2024年初中七年級上冊數學教案范本篇14
學習目標
1.掌握多項式、多項式的項及其次數,常數項的概念。
2.確定一個多項式的項、項數和次數。
3.由單項式與多項式歸納出整式概念。
4.在自主探索的學習過程中,引導學生觀察、歸納、理解多項式,并與單項式進行比較,運用化歸思想,讓學到的知識系統化。
重點:掌握整式及多項式的有關概念,掌握多項式的定義、多項式的項和次數,以及常數項等概念。
難點:多項式的次數。
學法指導
從實際問題引入多項式的項,項數和次數的概念,通過具體分析所列式子,歸納多項式,注意和單項式的概念進行比較,幫助學生理解。在掌握單項式和多項式相關概念的過程中,體會式子是解決問題和進行交流的重要工具之一,體會在實際問題情景中運用整式的意義,進一步發展學生數學符號感。
《2.1.3多項式》同步四維訓練含答案
新學期,兩摞規格相同準備發放的數學課本整齊地疊放在講臺上,請根據圖中所給出的數據信息,解答下列問題:
(1)請寫出整齊疊放在桌面上的x本數學課本最上面距離地面的高度(用含x的整式表示);
(2)桌面上有56本與題(1)中相同的數學課本整齊疊放成一摞,若從中取走14本,求余下的數學課本最上面距離地面的高度.
《2.1.2多項式》課時練習含答案
1.下列說法中正確的是( )
A.多項式ax2+bx+c是二次多項式
B.四次多項式是指多項式中各項均為四次單項式
C.-ab2,-x都是單項式,也都是整式
D.-4a2b,3ab,5是多項式-4a2b+3ab-5中的項
2.如果一個多項式是五次多項式,那么它任何一項的次數( )
A.都小于5 B.都等于5
C.都不小于5 D.都不大于5
3.一組按規律排列的多項式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10個式子是( )
A.a10+b19 B.a10-b19
C.a10-b17 D.a10-b21
4.若xn-2+x3+1是五次多項式,則n的值是( )
A.3 B.5 C.7 D.0
5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中單項式有,多項式有.(填序號)
6.一個關于a的二次三項式,二次項系數為2,常數項和一次項系數都是-3,則這個二次三項式為.
7.多項式的二次項系數是.
8.老師在課堂上說:“如果一個多項式是五次多項式……”老師的話還沒有說完,甲同學搶著說:“這個多項式最多只有六項.”乙同學說:“這個多項式只能有一項的次數是5.”丙同學說:“這個多項式一定是五次六項式.”丁同學說:“這個多項式最少有兩項,并且最高次項的.次數是5.”你認為甲、乙、丙、丁四位同學誰說得對,誰說得不對?你能說出他們說得對或不對的理由嗎?
9.如果多項式3xm-(n-1)x+1是關于x的二次二項式,試求m,n的值.
10.四人做傳數游戲,甲任取一個數傳給乙,乙把這個數加1傳給丙,丙再把所得的數平方后傳給丁,丁把所得的數減1報出答案,設甲任取的一個數為a.
(1)請把游戲最后丁所報出的答案用整式的形式描述出來;
(2)若甲取的數為19,則丁報出的答案是多少?
2024年初中七年級上冊數學教案范本篇15
教學目標:
1、了解正數與負數是實際生活的需要。
2、會判斷一個數是正數還是負數。
3、會用正負數表示互為相反意義的量。
教學重點:
會判斷正數、負數,運用正負數表示具有相反意義的量,理解表示具有相反意義的量的意義。
教學難點:
負數的引入。
教與學互動設計:
(一)創設情境,導入新課
課件展示 珠穆朗瑪峰和吐魯番盆地,讓同學感受高于水平面和低于水平面的不同情況。
(二)合作交流,解讀探究
舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7 ℃和零下5 ℃,買進90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等。
想一想 以上都是一些具有相反意義的量,你能用小學算術中的數來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?
為了用數表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進、收入、上升、高出等規定為正的,而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規定為負的,正的量用算術里學過的數表示,負的量用學過的數前面加上“—”(讀作負)號來表示(零除外)。
活動 每組同學之間相互合作交流,一同學說出有關相反意義的兩個量,由其他同學用正負數表示。
討論 什么樣的數是負數?什么樣的數是正數?0是正數還是負數?自己列舉正數、負數。
總結 正數是大于0的數,負數是在正數前面加“—”號的數,0既不是正數,也不是負數,是正數與負數的.分界點。
(三)應用遷移,鞏固提高
【例1】舉出幾對具有相反意義的量,并分別用正、負數表示。
【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等。
【例2】在某次乒乓球檢測中,一只乒乓球超過標準質量0.02 g,記作+0.02 g,那么—00.3 g表示什么?
【例3】 某項科學研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負,10時以后記為正。例如,9:15記為—1,10:45記為1等等。依此類推,上午7:45應記為( )
A.3 B.—3 C.—2.5 D.—7.45
【點撥】讀懂題意是解決本題的關鍵。7:45與10:00相差135分鐘。
(四)總結反思,拓展升華
為了表示現實生活中具有相反意義的量引進了負數。正數就是我們過去學過(除零外)的數,在正數前加上“—”號就是負數,不能說“有正號的數是正數,有負號的數是負數”。另外,0既不是正數,也不是負數。
1、下表是小張同學一周中簡記儲蓄罐中錢的進出情況表(存入記為“+”):
星期 日 一 二 三 四 五 六
(元) +16 +5.0 —1.2 —2.1 —0.9 +10 —2.6
(1)本周小張一共用掉了多少錢?存進了多少錢?
(2)儲蓄罐中的錢與原來相比是多了還是少了?
(3)如果不用正、負數的方法記賬,你還可以怎樣記賬?比較各種記賬的優劣。
2、數學游戲:4個同學站或蹲成一排,從左到右每個人編上號:1,2,3,4。用“+”表示“站”,“—”(負號)表示“蹲”。
(1)由一個同學大聲喊:+1,—2,—3,+4,則第1、第4個同學站,第2、第3個同學蹲,并保持這個姿勢,然后再大聲喊:—1,—2,+3,+4,如果第2、第4個同學中有改變姿勢的,則表示輸了,作小小的“懲罰”;
(2)增加游戲難度,把4個同學順序調整一下,但每個人記作自己原來的編號,再重復(1)中的游戲。
(五)課堂跟蹤反饋
夯實基礎
1、填空題:
(1)如果節約用水30噸記為+30噸,那么浪費20噸記為__噸。
(2)如果4年后記作+4年,那么8年前記作__年。
(3)如果運出貨物7噸記作—7噸,那么+100噸表示__。
(4)一年內,小亮體重增加了3 kg,記作+3 kg;小陽體重減少了2 kg,則小陽增加了__。
2、中午12時,水位低于標準水位0。5米,記作—0。5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0。5米。
(1)用正數或負數記錄下午1時和下午5時的水位;
(2)下午5時的水位比中午12時水位高多少?
提升能力
3、糧食每袋標準重量是50公斤,現測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49。8公斤。如果超重部分用正數表示,請用正數和負數記錄甲、乙、丙三袋糧食的超重數和不足數。
(六)課時小結
1、與以前相比,0的意義又多了哪些內容?
2、怎樣用正數和負數表示具有相反意義的量?(用正數表示其中具有一種意義的量,另一種量用負數表示)
2024年初中七年級上冊數學教案范本篇16
【教學目標】
1、通過豐富的實例,學生進一步認識點、線、面、體的幾何特征,感受它們之間的關系。
2、培養學生操作、觀察、分析、猜測和概括等能力,同時滲透轉化、化歸、變換的思想。
3、養成學生積極主動的學習態度和自主學習的方式。
【重點難點】
重點:認識點、線、面、體的幾何特征,感受它們之間的關系。
難點:在實際背景中體會點的含義。
【教學準備】
圓柱、圓錐、正方體、長方體、球、棱柱、棱錐模型
【教學過程】
一、創設情境
多媒體演示西湖風光,垂柳、波瀾不起的湖面、音樂噴泉、雨天、亭子……隨著鏡頭的切換,學生在欣賞美麗風景的同時,教師引導學生注意觀察:垂柳像什么?平靜的湖面像什么?湖中的小船像什么?隨著音樂起伏的噴泉又像什么?在岸邊的亭子中我們尋找到了哪些幾何圖形?從中感受生活中的點、線、面、體.
設計意圖:從西湖風光引入新課,引導學生觀察生活中的'美妙畫面,不僅能激發學生的學習興趣,而且讓學生對點、線、面、體有了初步的形象認識,感知知識來源于生活.如“點”是沒有大小的,學生難以真正理解,可以借助湖中的小船、地圖上用點表示城市的位里這些生活實例,讓學生體會到“點”的含義.
二、討論(動態研究)
課件演示:燦爛的星空,有流星劃過天際;汽車雨刷;長方形繞它的一邊快速轉動;問:這些圖形給我們什么樣的印象?
觀察、討論.讓學生共同體會“點動成線、線動成面、面動成體,’.
讓學生舉出更多的“點動成線、線動成面、面動成體”的例子。
小組合作學習,學生利用學具完成教科書第114頁練習(動手轉一轉)
設計意圖:教師利用多媒體動態演示,讓學生主動參與學習活動,觀察感受,經歷體驗圖形的變化過程,通過合作學習,感悟知識的生成、變化、發展,激發學生的聯想與再創造能力。學生自己動手實踐操作,加深學生印象,化解難度。
三、討論(靜態研究)
教師展示圖片(建筑或生活的實物等),讓學生找找生活中的平面、曲面、直線、點等。
讓學生找出生活中更多的包含平面、曲面、直線、曲線、點的例子。
四、探索
1、課本112頁觀察,并回答它的問題。
引導學生觀察后得出結論:面與面相交得到線,線與線相交得到點。
2、113頁練習(提供實物,議一議,動手摸一摸),思考以下問題:
這些立體圖形是由幾個面圍成的,它們都是平的嗎?圓錐的側面與底面相交成幾條線,是直線還是曲線?正方體有幾個頂點?經過每個頂點有幾條邊?
讓學生自己體會并小組討論得出點、線、面、體之間的關系。
五、作業
1、“當你遠遠地去觀察霓虹燈組成的圖案時,圖案中的每個霓虹燈就是一個點;在交通圖上,點用來表示每個地方;電視屏幕上的畫面也是由一個個小點組成;運用點可以組成數字和字母,這正是點陣式打印機的原理.”說說你對上述這段敘述的理解和體會.
2、閱讀教科書第119頁的實驗與探究,并思考有關問題。
2024年初中七年級上冊數學教案范本篇17
【學習目標】
1.回顧、思考本所學的知識及思想方法,并能進行梳理,使所學知識系統化.
2.豐富對平面圖形的認識,能有條理地、清晰地闡述自己的觀點.
【導學提綱】
梳理本知識:
1. 基本概念
2.位置關系 .
3.相關圖形的性質.
(1)線段和直線的有關性質:
(2)余角、補角、對頂角的有關性質:
(3)平行和垂直的有關性質:
4.基本作圖.(尺規作圖)
(1)作一條線段AB等于線段a;
(2)作 等于 .
5.分類思想.
【反饋矯正】
1.完成本p172頁復習題第1、2、3、4、5、7、8題
2.8°44′24″用度表示為_______,110.32°用度、分、秒表示為_______.
3.如果 與 互補, 與 互余,則 與 的關系是( )
A. = B.
C. D. 與 互余
4.在1點與2點之間,時鐘的時針與分針成直角的時刻是1時______分.
5.如圖,OE是∠AOD的平分線,OF⊥OD,垂足為O,
∠EOF=19°,求∠AOD的度數.
【遷移拓展】
完成本p172頁復習題第9、11、14題
【堂作業】本p172頁復習題第6、10題
整式
題2.1 整式時本學期
第 時日期
型新授主備人復備人審核人
學習
目標(1)了解單 項式 及單項式系數、次數的概念;
(2)會準確迅速地確定一個單項式的系數和次數。
重點
難點重點:單項式及單 項式的.系數、次數的概念;
準確迅速地確定一個單項式的系數和次數。
難點:單項式概念的建立
流程師生活動時 間復備標注
一、導入新
回顧:先填空,再請說出你所列式子的運算含義。
1、邊長為x的正方形的周長是 。
2、一輛汽車的速度是v千米/小時,行駛t小時所走過的路程為 千米。
3、 如圖正方體的表面積為 ,體積為 。
4、設n表示 一個數,則它的相反數是
看前圖,嘗試回答3 個問題
在小學,我們學過 用字母表示數。我們 可以用這種方法回答上面的問題。在本還會看到,我們不僅可以用字母 或含有字母的式子表示數和數量關 系,而且還可以將這樣的式子進行加減運算。這些內容將為下一一元一次方程的學習打下基 礎
二、新授
1、自學第54--55頁,回答下列問題
完成思考的4個問題
什么是單項式,單項式的系數,次數?舉例說明
歸納小結:數或字母的積的式子叫做單項式,單項式中數字因數叫做單項 式的系數,一個單項式中,所有字母的指數的和叫做這個單 項式的次數。
注意:單項式表示數字與字母相乘時,通常數字寫在前面 ;系數、指數為1時,常省略不寫。
完成56頁練習1
2、自學第55頁例題,回答 下列問題
獨立完成例題,后訂正答案
同一個式子表示的意義是否相同?
歸納小結:用字母表示數后,同一個 式子可以表示不同的含義。
3、完成56頁練習2
三、堂達標練習
59頁習題1
四、堂小結
1、單項式、單項式系數、單項式次數的概念
2、在找單項式系數、次數 時需注意什么 問題?在寫單項式時需注意什么問題?
2024年初中七年級上冊數學教案范本篇18
教學目標
1,掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;
2,了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3,體驗分類是數學上的常用處理問題的方法。
教學難點正確理解分類的標準和按照一定的標準進行分類
知識重點正確理解有理數的概念
教學過程
探索新知
在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的`數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數,并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5.1不是整個的數,稱為“正分數,,.…(由于小數可化為分數,以后把小數和分數都稱為分數)
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,”。
按照書本的說法,得出“整數”“分數”和“有理數”的概念.
看書了解有理數名稱的由來.
“統稱”是指“合起來總的名稱”的意思.
試一試:
按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的)分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練
1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.
2,教科書第10頁練習
此練習中出現了集合的概念,可向學生作如下的說明.
把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號:。
思考:
問題1:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
創新探究
問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。
小結與作業
到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
2024年初中七年級上冊數學教案范本篇19
教學目的:
(一)知識點目標:
1.了解正數和負數是怎樣產生的。
2.知道什么是正數和負數。
3.理解數0表示的量的意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量的符號化方法。
2.會用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:知道什么是正數和負數,理解數0表示的量的意義。
教學難點:理解負數,數0表示的量的意義。
教學方法:師生互動與教師講解相結合。
教具準備:地圖冊(中國地形圖)。
教學過程:
引入新課:
1.活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、?
內容:老師說出指令:
向前兩步,向后兩步;
向前一步,向后三步;
向前兩步,向后一步;
向前四步,向后兩步。
如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節課,我們就來學習這種帶有特殊符號、表示具有實際意義的數-----正數和負數。
講授新課:
1.自然數的產生、分數的產生。
2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數與排名順序、±0.5、-9的意義。
3、正數、負數的定義:我們把以前學過的'0以外的數叫做正數,在這些數的前面帶有“一”時叫做負數。根據需要有時在正數前面也加上“十”(正號)表示正數。
舉例說明:3、2、0.5、等是正數(也可加上“十”)
-3、-2、-0.5、-等是負數。
4、數0既不是正,也不是負數,0是正數和負數的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學生舉例說明正、負數在實際中的應用。展示圖片(又見教材P5圖1.1-2-3)讓學生觀察地形圖上的標注和記錄支出、存入信息的本地某銀行的存折,說出你知道的信息。
鞏固提高:練習:課本P5練習
課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1的第1、2、4、5題。
活動與探究:
在一次數學測驗中,某班的平均分為85分,把高于平均分的高出部分記為正數。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?