創(chuàng)意初中數(shù)學(xué)教案
創(chuàng)意初中數(shù)學(xué)教案篇1
教學(xué)目標(biāo):
1、了解公式的意義,使學(xué)生能用公式解決簡(jiǎn)單的實(shí)際問(wèn)題;
2、初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3、通過(guò)本節(jié)課的教學(xué),使學(xué)生初步了解公式來(lái)源于實(shí)踐又反作用于實(shí)踐。
教學(xué)建議:
一、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):通過(guò)具體例子了解公式、應(yīng)用公式。
難點(diǎn):從實(shí)際問(wèn)題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來(lái)的歸納的思想方法。
二、重點(diǎn)、難點(diǎn)分析
人們從一些實(shí)際問(wèn)題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫(xiě)成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時(shí),首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計(jì)算時(shí),就是求代數(shù)式的值了。有的公式,可以借助運(yùn)算推導(dǎo)出來(lái);有的公式,則可以通過(guò)實(shí)驗(yàn),從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來(lái)。用這些抽象出的具有一般性的公式解決一些問(wèn)題,會(huì)給我們認(rèn)識(shí)和改造世界帶來(lái)很多方便。
三、知識(shí)結(jié)構(gòu)
本節(jié)一開(kāi)始首先概述了一些常見(jiàn)的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過(guò)觀察歸納推導(dǎo)公式解決一些實(shí)際問(wèn)題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1、對(duì)于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識(shí)公式中每一個(gè)字母、數(shù)字的意義,以及這些數(shù)量之間的對(duì)應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對(duì)公式的靈活應(yīng)用。
2、在教學(xué)過(guò)程中,應(yīng)使學(xué)生認(rèn)識(shí)有時(shí)問(wèn)題的解決并沒(méi)有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過(guò)分析和具體運(yùn)算推導(dǎo)新公式。
3、在解決實(shí)際問(wèn)題時(shí),學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對(duì)應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問(wèn)題。這種從特殊到一般、再?gòu)囊话愕教厥庹J(rèn)識(shí)過(guò)程,有助于提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
教學(xué)設(shè)計(jì)示例:
一、教學(xué)目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1、使學(xué)生能利用公式解決簡(jiǎn)單的實(shí)際問(wèn)題。
2、使學(xué)生理解公式與代數(shù)式的關(guān)系。
(二)能力訓(xùn)練點(diǎn)
1、利用數(shù)學(xué)公式解決實(shí)際問(wèn)題的能力。
2、利用已知的公式推導(dǎo)新公式的能力。
(三)德育滲透點(diǎn)
數(shù)學(xué)來(lái)源于生產(chǎn)實(shí)踐,又反過(guò)來(lái)服務(wù)于生產(chǎn)實(shí)踐。
(四)美育滲透點(diǎn)
數(shù)學(xué)公式是用簡(jiǎn)潔的數(shù)學(xué)形式來(lái)闡明自然規(guī)定,解決實(shí)際問(wèn)題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡(jiǎn)潔美。
二、學(xué)法引導(dǎo)
1、數(shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問(wèn)小學(xué)里學(xué)過(guò)的公式為基礎(chǔ)、突破難點(diǎn)。
2、學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計(jì)算。
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1、重點(diǎn):利用舊公式推導(dǎo)出新的圖形的計(jì)算公式。
2、難點(diǎn):同重點(diǎn)。
3、疑點(diǎn):把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差。
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀,自制膠片。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教者投影顯示推導(dǎo)梯形面積計(jì)算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式。
七、教學(xué)步驟
(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入
師:同學(xué)們已經(jīng)知道,代數(shù)的一個(gè)重要特點(diǎn)就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們?cè)谛W(xué)里學(xué)過(guò)許多公式,請(qǐng)大家回憶一下,我們已經(jīng)學(xué)過(guò)哪些公式,教法說(shuō)明,讓學(xué)生一開(kāi)始就參與課堂教學(xué),使學(xué)生在后面利用公式計(jì)算感到不生疏。
在學(xué)生說(shuō)出幾個(gè)公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運(yùn)用公式解決實(shí)際問(wèn)題。
板書(shū):公式
師:小學(xué)里學(xué)過(guò)哪些面積公式?
板書(shū):S=ah
(出示投影1)。解釋三角形,梯形面積公式
【教法說(shuō)明】讓學(xué)生感知用割補(bǔ)法求圖形的面積。
創(chuàng)意初中數(shù)學(xué)教案篇2
課題名稱:完全平方公式(1)
一、內(nèi)容簡(jiǎn)介
本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。
關(guān)鍵信息:
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
二、學(xué)習(xí)者分析:
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
①同類項(xiàng)的定義。
②合并同類項(xiàng)法則
③多項(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
三、教學(xué)/學(xué)習(xí)目標(biāo)及其對(duì)應(yīng)的課程標(biāo)準(zhǔn):
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理
數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。
(四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同
角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難
和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。
四、教育理念和教學(xué)方式:
1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過(guò)程。當(dāng)學(xué)生迷路的時(shí)
候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。
2、采用“問(wèn)題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式
展開(kāi)教學(xué)。
3、教學(xué)評(píng)價(jià)方式:
(1)通過(guò)課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動(dòng)中的主
動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。
(2)通過(guò)判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,
揭示思維過(guò)程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。
(3)通過(guò)課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的
教學(xué)效果。
五、教學(xué)媒體:多媒體六、教學(xué)和活動(dòng)過(guò)程:
教學(xué)過(guò)程設(shè)計(jì)如下:
〈一〉、提出問(wèn)題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問(wèn)題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點(diǎn)。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問(wèn)題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判斷:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小試牛刀
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
(1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
〈五〉、冒險(xiǎn)島:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、學(xué)生自我評(píng)價(jià)
[小結(jié)]通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
本節(jié)課,我們自己通過(guò)計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識(shí)探索的過(guò)程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
〈七〉[作業(yè)]P34隨堂練習(xí)P36習(xí)題
創(chuàng)意初中數(shù)學(xué)教案篇3
教學(xué)目標(biāo) 1, 整理前兩個(gè)學(xué)段學(xué)過(guò)的整數(shù)、分?jǐn)?shù)(包括小數(shù))的知識(shí),掌握正數(shù)和負(fù)數(shù)的概念;
2, 能區(qū)分兩種不同意義的量,會(huì)用符號(hào)表示正數(shù)和負(fù)數(shù);
3, 體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn) 正確區(qū)分兩種不同意義的量。
知識(shí)重點(diǎn) 兩種相反意義的量
教學(xué)過(guò)程(師生活動(dòng)) 設(shè)計(jì)理念
設(shè)置情境
引入課題 上課開(kāi)始時(shí),教師應(yīng)通過(guò)具體的例子,簡(jiǎn)要說(shuō)明在前兩個(gè)學(xué)段我們已經(jīng)學(xué)過(guò)的數(shù),并由此請(qǐng)學(xué)生思考:生
活中僅有這些“以前學(xué)過(guò)的數(shù)”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經(jīng)是七年級(jí)的學(xué)生了,我是你們的數(shù)學(xué)老師.下面我先向你們做一下自我介紹,我的名字是,身高1.73米,體重58.5千克,今年40歲.我們的班級(jí)是七(13)班,有60個(gè)同學(xué),其中男同學(xué)有22個(gè),占全班總?cè)藬?shù)的37%…
問(wèn)題1:老師剛才的介紹中出現(xiàn)了幾個(gè)數(shù)?分別是什么?你能將這些數(shù)按以前學(xué)過(guò)的數(shù)的分類方法進(jìn)行分類嗎?
學(xué)生活動(dòng):思考,交流
師:以前學(xué)過(guò)的數(shù),實(shí)際上主要有兩大類,分別是整數(shù)和分?jǐn)?shù)(包括小數(shù)).
問(wèn)題2:在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?
請(qǐng)同學(xué)們看書(shū)(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學(xué)生感受引入負(fù)數(shù)的必要性)并思考討論,然后進(jìn)行交流。
(也可以出示氣象預(yù)報(bào)中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁(yè)面等)
學(xué)生交流后,教師歸納:以前學(xué)過(guò)的數(shù)已經(jīng)不夠用了,有時(shí)候需要一種前面帶有“-”的新數(shù)。 先回顧小學(xué)里學(xué)過(guò)的數(shù)的類型,歸納出我們已經(jīng)學(xué)了整數(shù)和分?jǐn)?shù),然后,舉一些實(shí)際生活中共有相反意義的量,說(shuō)明為了表示相反意義的量,我們需要引入負(fù)數(shù),這樣做強(qiáng)調(diào)了數(shù)學(xué)的嚴(yán)
密性,但對(duì)于學(xué)生來(lái)說(shuō),更多
地感到了數(shù)學(xué)的枯燥乏味為了既復(fù)習(xí)小學(xué)里學(xué)過(guò)的數(shù),又能激發(fā)學(xué)生的學(xué)習(xí)興
趣,所以創(chuàng)設(shè)如下的問(wèn)題情境,以盡量貼近學(xué)生的實(shí)際.
這個(gè)問(wèn)題能激發(fā)學(xué)生探究的欲望,學(xué)生自己看書(shū)學(xué)習(xí)是培養(yǎng)學(xué)生自主學(xué)習(xí)的重要途徑,都應(yīng)予以重視。
以上的情境和實(shí)例使學(xué)生體會(huì)生活中處處有數(shù)學(xué),通過(guò)實(shí)例,使學(xué)生獲取大量的感性材料,為正確建立相反意義的量奠定基礎(chǔ)。
分析問(wèn)題
探究新知 問(wèn)題3:前面帶有“一”號(hào)的新數(shù)我們應(yīng)怎樣命名它呢?為什么要引人負(fù)數(shù)呢?通常在日常生活中我們用正數(shù)和負(fù)數(shù)分別表示怎樣的量呢?
這些問(wèn)題都必須要求學(xué)生理解.
教師可以用多媒體出示這些問(wèn)題,讓學(xué)生帶著這些問(wèn)題看書(shū)自學(xué),然后師生交流.
這階段主要是讓學(xué)生學(xué)會(huì)正數(shù)和負(fù)數(shù)的表示.
強(qiáng)調(diào):用正,負(fù)數(shù)表示實(shí)際問(wèn)題中具有相反意義的量,而相反意義的量包含兩個(gè)要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量. 這些問(wèn)題是這節(jié)課的主要知識(shí),教師要清楚地向?qū)W生說(shuō)明,并且要注意語(yǔ)言的準(zhǔn)確與規(guī)范,要舍得花時(shí)間讓學(xué)充分發(fā)表想法。
舉一反三思維拓展 經(jīng)過(guò)上面的討論交流,學(xué)生對(duì)為什么要引人負(fù)數(shù),對(duì)怎樣用正數(shù)和負(fù)數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學(xué)生舉出實(shí)際生活中類似的例子,以加深對(duì)正數(shù)和負(fù)數(shù)概念的理解,并開(kāi)拓思維.
問(wèn)題4:請(qǐng)同學(xué)們舉出用正數(shù)和負(fù)數(shù)表示的例子.
問(wèn)題5:你是怎樣理解“正整數(shù)”“負(fù)整數(shù),,’’正分?jǐn)?shù)”和“負(fù)分?jǐn)?shù)”的呢?請(qǐng)舉例說(shuō)明.
能否舉出例子是學(xué)生對(duì)知識(shí)掌握程度的體現(xiàn),也能進(jìn)一步幫助學(xué)生理解引負(fù)數(shù)的必要性
課堂練習(xí) 教科書(shū)第5頁(yè)練習(xí)
小結(jié)與作業(yè)
課堂小結(jié) 圍繞下面兩點(diǎn),以師生共同交流的方式進(jìn)行:
1, 0由于實(shí)際問(wèn)題中存在著相反意義的量,所以要引人負(fù)數(shù),這樣數(shù)的范圍就擴(kuò)大了;
2,正數(shù)就是以前學(xué)過(guò)的0以外的數(shù)(或在其前面加“+”),負(fù)數(shù)就是在以前學(xué)過(guò)的0以外的數(shù)前面加“-”。
本課作業(yè) 教科書(shū)第7頁(yè)習(xí)題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。
作業(yè)可設(shè)必做題和選 做題,體現(xiàn)要求的層次性,以滿足不同學(xué)生的需要
本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
密切聯(lián)系生活實(shí)際,創(chuàng)設(shè)學(xué)習(xí)情境.本課是有理數(shù)的第一節(jié)課時(shí).引人負(fù)數(shù)是數(shù)的范圍的一次重要擴(kuò)充,學(xué)生頭腦中關(guān)于數(shù)的結(jié)構(gòu)要做重大調(diào)整(其實(shí)是一次知識(shí)的順應(yīng)過(guò)程),而負(fù)數(shù)相對(duì)于以前的數(shù),對(duì)學(xué)生來(lái)說(shuō)顯得更抽象,因此,這個(gè)概念并不是一下就能建立的.為了接受這個(gè)新的數(shù),就必須對(duì)原有的數(shù)的結(jié)構(gòu)進(jìn)行整理,引人幣的舉例就是這個(gè)目的.
負(fù)數(shù)的產(chǎn)生主要是因?yàn)樵械臄?shù)不夠用了(不能正確簡(jiǎn)潔地表示數(shù)量),書(shū)本的例子
或圖片中出現(xiàn)的負(fù)數(shù)就是讓學(xué)生去感受和體驗(yàn)這一點(diǎn).使學(xué)生接受生活生產(chǎn)實(shí)際中確實(shí)
存在著兩種相反意義的量是本課的教學(xué)難點(diǎn),所以在教學(xué)中可以多舉幾個(gè)這方面的例
子,并且所舉的例子又應(yīng)該符合學(xué)生的年齡和思維特點(diǎn)。當(dāng)學(xué)生接受了這個(gè)事實(shí)后,引入負(fù)數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了.
這個(gè)教學(xué)設(shè)計(jì)突出了數(shù)學(xué)與實(shí)際生活的緊密聯(lián)系,使學(xué)生體會(huì)到數(shù)學(xué)的應(yīng)用價(jià)值,
體現(xiàn)了學(xué)生自主學(xué)習(xí)、合作交流的教學(xué)理念,書(shū)本中的圖片和例子都是生活生產(chǎn)中常見(jiàn)
的事實(shí),學(xué)生容易接受,所以應(yīng)該讓學(xué)生自己看書(shū)、學(xué)習(xí),并且鼓勵(lì)學(xué)生討論交流,教師作適當(dāng)引導(dǎo)就可以了。
創(chuàng)意初中數(shù)學(xué)教案篇4
一、教學(xué)目標(biāo):
1、知道一次函數(shù)與正比例函數(shù)的定義。
2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì)。
3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系。
4、掌握直線的平移法則簡(jiǎn)單應(yīng)用。
5、能應(yīng)用本章的基礎(chǔ)知識(shí)熟練地解決數(shù)學(xué)問(wèn)題。
二、教學(xué)重、難點(diǎn):
重點(diǎn):初步構(gòu)建比較系統(tǒng)的函數(shù)知識(shí)體系。
難點(diǎn):對(duì)直線的平移法則的理解,體會(huì)數(shù)形結(jié)合思想。
三、教學(xué)過(guò)程:
1、一次函數(shù)與正比例函數(shù)的定義:
一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)。
正比例函數(shù):對(duì)于y=kx+b,當(dāng)b=0,k≠0時(shí),有y=kx,此時(shí)稱y是x的正比例函數(shù),k為正比例系數(shù)。
2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:
(1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。
(2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過(guò)原點(diǎn)(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過(guò)點(diǎn)(0,b)且與y=kx
平行的一條直線。
基礎(chǔ)訓(xùn)練:
1、寫(xiě)出一個(gè)圖象經(jīng)過(guò)點(diǎn)(1,—3)的函數(shù)解析式為:
2、直線y=—2X—2不經(jīng)過(guò)第象限,y隨x的增大而。
3、如果P(2,k)在直線y=2x+2上,那么點(diǎn)P到x軸的距離是:
4、已知正比例函數(shù)y=(3k—1)x,,若y隨x的增大而增大,則k是:
5、過(guò)點(diǎn)(0,2)且與直線y=3x平行的直線是:
6、若正比例函數(shù)y=(1—2m)x的圖像過(guò)點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)當(dāng)x1<x2時(shí),y1>y2,則m的取值范圍是:
7、若y—2與x—2成正比例,當(dāng)x=—2時(shí),y=4,則x=時(shí),y=—4。
8、直線y=—5x+b與直線y=x—3都交y軸上同一點(diǎn),則b的值為。
9、已知圓O的半徑為1,過(guò)點(diǎn)A(2,0)的直線切圓O于點(diǎn)B,交y軸于點(diǎn)C。
(1)求線段AB的長(zhǎng)。
(2)求直線AC的解析式。
創(chuàng)意初中數(shù)學(xué)教案篇5
教學(xué)目的
1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2. 熟識(shí)等邊三角形的性質(zhì)及判定.
2.通過(guò)例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。
教學(xué)重點(diǎn): 等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn): 簡(jiǎn)潔的邏輯推理。
教學(xué)過(guò)程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱“等邊對(duì)等角”。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以∠B=∠C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡(jiǎn)稱“三線合一”。由于AD為等腰三角形的對(duì)稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。
2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請(qǐng)同學(xué)們畫(huà)一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的知識(shí),通過(guò)推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個(gè)角都等于60°。
等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),∠B=30°,求∠1和∠ADC的度數(shù)。
分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
問(wèn)題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?
問(wèn)題2:求∠1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對(duì)的打“√”,錯(cuò)的打“×”。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個(gè)角是60°的等腰三角形,其它兩個(gè)內(nèi)角也為60°( )
2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數(shù)。
3.P54練習(xí)1、2。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。
五、作業(yè): 1.課本P57第7,9題。
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數(shù)。
12.3.2 等邊三角形(二)
教學(xué)目標(biāo)
1.掌握等邊三角形的性質(zhì)和判定方法. 2.培養(yǎng)分析問(wèn)題、解決問(wèn)題的能力.
教學(xué)重點(diǎn):等邊三角形的性質(zhì)和判定方法.
教學(xué)難點(diǎn):等邊三角形性質(zhì)的應(yīng)用
教學(xué)過(guò)程
I創(chuàng)設(shè)情境,提出問(wèn)題
回顧上節(jié)課講過(guò)的等邊三角形的有關(guān)知識(shí)
1.等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸.
2.等邊三角形每一個(gè)角相等,都等于60°
3.三個(gè)角都相等的三角形是等邊三角形.
4.有一個(gè)角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
①在邊AB、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
③過(guò)邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
3. P56頁(yè)練習(xí)1、2
III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件
V布置作業(yè): 1.P58頁(yè)習(xí)題12.3第ll題.
2.已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?
12.3.2 等邊三角形(三)
教學(xué)過(guò)程
一、 復(fù)習(xí)等腰三角形的判定與性質(zhì)
二、 新授:
1.等邊三角形的性質(zhì):三邊相等;三角都是60°;三邊上的中線、高、角平分線相等
2.等邊三角形的判定:
三個(gè)角都相等的三角形是等邊三角形;有一個(gè)角是60°的等腰三角形是等邊三角形;
在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半
注意:推論1是判定一個(gè)三角形為等邊三角形的一個(gè)重要方法.推論2說(shuō)明在等腰三角形中,只要有一個(gè)角是600,不論這個(gè)角是頂角還是底角,就可以判定這個(gè)三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關(guān)系.
3.由學(xué)生解答課本148頁(yè)的例子;
4.補(bǔ)充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,
∠ABC=120o, 求證: AB=2BC
分析 由已知條件可得∠ABD=30o, 如能構(gòu)造有一個(gè)銳角是30o的直角三角形, 斜邊是AB,30o角所對(duì)的邊是與BC相等的線段,問(wèn)題就得到解決了.
創(chuàng)意初中數(shù)學(xué)教案篇6
教學(xué)目標(biāo)
1、知識(shí)與技能:體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,了解公式的幾何背景,理解公式的本質(zhì),會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算.
2、過(guò)程與方法:通過(guò)讓學(xué)生經(jīng)歷探索完全平方公式的過(guò)程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達(dá)能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.
3、情感態(tài)度價(jià)值觀:體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn)與喜悅,樹(shù)立學(xué)習(xí)自信心.
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):
1、對(duì)公式的理解,包括它的推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)、語(yǔ)言表述(學(xué)生自己的語(yǔ)言)、幾何解釋.
2、會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算.
教學(xué)難點(diǎn):
1、完全平方公式的推導(dǎo)及其幾何解釋.
2、完全平方公式的結(jié)構(gòu)特點(diǎn)及其應(yīng)用.
教學(xué)工具
課件
教學(xué)過(guò)程
一、復(fù)習(xí)舊知、引入新知
問(wèn)題1:請(qǐng)說(shuō)出平方差公式,說(shuō)說(shuō)它的結(jié)構(gòu)特點(diǎn).
問(wèn)題2:平方差公式是如何推導(dǎo)出來(lái)的?
問(wèn)題3:平方差公式可用來(lái)解決什么問(wèn)題,舉例說(shuō)明.
問(wèn)題4:想一想、做一做,說(shuō)出下列各式的結(jié)果.
(1)(a+b)2(2)(a-b)2
(此時(shí),教師可讓學(xué)生分別說(shuō)說(shuō)理由,并且不直接給出正確評(píng)價(jià),還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣.)
二、創(chuàng)設(shè)問(wèn)題情境、探究新知
一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種.(如圖)
(1)四塊面積分別為:、、、;
(2)兩種形式表示實(shí)驗(yàn)田的總面積:
①整體看:邊長(zhǎng)為的大正方形,S=;
②部分看:四塊面積的和,S=.
總結(jié):通過(guò)以上探索你發(fā)現(xiàn)了什么?
問(wèn)題1:通過(guò)以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問(wèn)題4正確的結(jié)果是什么了吧?
問(wèn)題2:如果還有同學(xué)不認(rèn)同這個(gè)結(jié)果,我們?cè)倏聪旅娴膯?wèn)題,繼續(xù)探索.(a+b)2表示的意義是什么?請(qǐng)你用多項(xiàng)式的乘法法則加以驗(yàn)證.
(教學(xué)過(guò)程中教師要有意識(shí)地提到猜想、感覺(jué)得到的不一定正確,只有再通過(guò)驗(yàn)證才能得出真知,但還是要鼓勵(lì)學(xué)生大膽猜想,發(fā)表見(jiàn)解,但要驗(yàn)證)
問(wèn)題3:你能說(shuō)說(shuō)(a+b)2=a2+2ab+b2
這個(gè)等式的結(jié)構(gòu)特點(diǎn)嗎?用自己的語(yǔ)言敘述.
(結(jié)構(gòu)特點(diǎn):右邊是二項(xiàng)式(兩數(shù)和)的平方,右邊有三項(xiàng),是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)
問(wèn)題4:你能根據(jù)以上等式的結(jié)構(gòu)特點(diǎn)說(shuō)出(a-b)2等于什么嗎?請(qǐng)你再用多項(xiàng)式的乘法法則加以驗(yàn)證.
總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.
問(wèn)題:①這兩個(gè)公式有何相同點(diǎn)與不同點(diǎn)?②你能用自己的語(yǔ)言敘述這兩個(gè)公式嗎?
語(yǔ)言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.
強(qiáng)化記憶:首平方,尾平方,首尾二倍放中央,和是加來(lái)差是減.
三、例題講解,鞏固新知
例1:利用完全平方公式計(jì)算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流總結(jié):運(yùn)用完全平方公式計(jì)算的一般步驟
(1)確定首、尾,分別平方;
(2)確定中間系數(shù)與符號(hào),得到結(jié)果.
四、練習(xí)鞏固
練習(xí)1:利用完全平方公式計(jì)算
練習(xí)2:利用完全平方公式計(jì)算
練習(xí)3:
(練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評(píng)價(jià).也可學(xué)生獨(dú)立完成后,學(xué)生互相批改,力求使學(xué)生對(duì)公式完全掌握,如有學(xué)生出現(xiàn)問(wèn)題,學(xué)生、教師應(yīng)及時(shí)幫助.)
五、變式練習(xí)
六、暢談收獲,歸納總結(jié)
1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式.
2、我們?cè)谶\(yùn)用公式時(shí),要注意以下幾點(diǎn):
(1)公式中的字母a、b可以是任意代數(shù)式;
(2)公式的結(jié)果有三項(xiàng),不要漏項(xiàng)和寫(xiě)錯(cuò)符號(hào);
(3)可能出現(xiàn)①②這樣的錯(cuò)誤.也不要與平方差公式混在一起.
七、作業(yè)設(shè)置
創(chuàng)意初中數(shù)學(xué)教案篇7
一、教學(xué)目標(biāo):
1、理解二元一次方程及二元一次方程的解的概念;
2、學(xué)會(huì)求出某二元一次方程的幾個(gè)解和檢驗(yàn)?zāi)硨?duì)數(shù)值是否為二元一次方程的解;
3、學(xué)會(huì)把二元一次方程中的一個(gè)未知數(shù)用另一個(gè)未知數(shù)的一次式來(lái)表示;
4、在解決問(wèn)題的過(guò)程中,滲透類比的思想方法,并滲透德育教育。
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):二元一次方程的意義及二元一次方程的解的概念。
難點(diǎn):把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。
三、教學(xué)方法與教學(xué)手段:
通過(guò)與一元一次方程的比較,加強(qiáng)學(xué)生的類比的思想方法;通過(guò)“合作學(xué)習(xí)”,使學(xué)生認(rèn)識(shí)數(shù)學(xué)是根據(jù)實(shí)際的需要而產(chǎn)生發(fā)展的觀點(diǎn)。
四、教學(xué)過(guò)程:
1、情景導(dǎo)入:
新聞鏈接:x70歲以上老人可領(lǐng)取生活補(bǔ)助。
得到方程:80a+150b=902880、
2、新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1次的方程叫做二元一次方程。
做一做:
(1)根據(jù)題意列出方程:
①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價(jià)、設(shè)蘋果的單價(jià)x元/kg,梨的單價(jià)y元/kg;
②在高速公路上,一輛轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米,如果設(shè)轎車的速度是a千米/小時(shí),卡車的速度是b千米/小時(shí),可得方程:
(2)課本P80練習(xí)2、判定哪些式子是二元一次方程方程。
合作學(xué)習(xí):
活動(dòng)背景愛(ài)心滿人間——記求是中學(xué)“學(xué)雷鋒、關(guān)愛(ài)老人”志愿者活動(dòng)。
問(wèn)題:參加活動(dòng)的36名志愿者,分為勞動(dòng)組和文藝組,其中勞動(dòng)組每組3人,文藝組每組6人、團(tuán)支書(shū)擬安排8個(gè)勞動(dòng)組,2個(gè)文藝組,單從人數(shù)上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒(méi)有相等?由學(xué)生檢驗(yàn)得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的&39;一對(duì)未知數(shù)的值叫做二元一次方程的一個(gè)解。
并提出注意二元一次方程解的書(shū)寫(xiě)方法。
3、合作學(xué)習(xí):
給定方程x+2y=8,男同學(xué)給出y(x取絕對(duì)值小于10的整數(shù))的值,女同學(xué)馬上給出對(duì)應(yīng)的x的值;接下來(lái)男女同學(xué)互換、(比一比哪位同學(xué)反應(yīng)快)請(qǐng)算的最快最準(zhǔn)確的同學(xué)講他的計(jì)算方法、提問(wèn):給出x的值,計(jì)算y的值時(shí),y的系數(shù)為多少時(shí),計(jì)算y最為簡(jiǎn)便?
出示例題:已知二元一次方程x+2y=8。
(1)用關(guān)于y的代數(shù)式表示x;
(2)用關(guān)于x的代數(shù)式表示y;
(3)求當(dāng)x=2,0,—3時(shí),對(duì)應(yīng)的y的值,并寫(xiě)出方程x+2y=8的三個(gè)解。
(當(dāng)用含x的一次式來(lái)表示y后,再請(qǐng)同學(xué)做游戲,讓同學(xué)體會(huì)一下計(jì)算的速度是否要快)
4、課堂練習(xí):
(1)已知:5xm—2yn=4是二元一次方程,則m+n=;
(2)二元一次方程2x—y=3中,方程可變形為y=當(dāng)x=2時(shí),y=;
5、你能解決嗎?
小紅到郵局給遠(yuǎn)在農(nóng)村的爺爺寄掛號(hào)信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問(wèn)各需要多少?gòu)堖@兩種面額的郵票?說(shuō)說(shuō)你的方案。
6、課堂小結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書(shū)寫(xiě)格式);
(2)二元一次方程解的不定性和相關(guān)性;
(3)會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。
7、布置作業(yè):