人教版高一數(shù)學(xué)教案大全
教案不能面面俱到、大而全,而應(yīng)該是在學(xué)科基本的知識框架基礎(chǔ)上,對當(dāng)前急需解決的問題進(jìn)行研究、探索、闡述,能夠體現(xiàn)教師對相關(guān)學(xué)科有價值的學(xué)術(shù)觀點(diǎn)及研究心得。下面是小編為大家整理的關(guān)于人教版高一數(shù)學(xué)教案大全,歡迎大家閱讀參考學(xué)習(xí)!
人教版高一數(shù)學(xué)教案大全1
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1.掌握平面向量的數(shù)量積及其幾何意義;
2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;
3.了解用平面向量的數(shù)量積可以處理垂直的問題;
4.掌握向量垂直的條件.
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):平面向量的數(shù)量積定義
教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)過程
1.平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并規(guī)定0向量與任何向量的數(shù)量積為0.
×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的符號什么時候為正?什么時候為負(fù)?
2、兩個向量的數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定.
(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學(xué)到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴(yán)格區(qū)分.符號“·”在向量運(yùn)算中不是乘號,既不能省略,也不能用“×”代替.
(3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.
人教版高一數(shù)學(xué)教案大全2
【教學(xué)目標(biāo)】
(1)體現(xiàn)建立函數(shù)模型刻畫現(xiàn)實問題的基本過程.
(2)了解函數(shù)模型的廣泛應(yīng)用
(3)通過學(xué)生進(jìn)行操作和探究提高學(xué)生發(fā)現(xiàn)問題、分析問題、解決實際問題的能力
(4)提高學(xué)生探究學(xué)習(xí)新知識的興趣,培養(yǎng)學(xué)生,勇于探索的科學(xué)態(tài)度
【重點(diǎn)】了解并建立函數(shù)模型刻畫現(xiàn)實問題的基本過程,了解函數(shù)模型的廣泛應(yīng)用
【難點(diǎn)】建立函數(shù)模型刻畫現(xiàn)實問題中數(shù)據(jù)的處理
【教學(xué)目標(biāo)解析】通過對全班學(xué)生中抽樣得出的樣本進(jìn)行分析和處理,,使學(xué)生認(rèn)識到本節(jié)課的重點(diǎn)是利用函數(shù)建模刻畫現(xiàn)實問題的基本過程和提高解決實際問題的能力,在引導(dǎo)突出重點(diǎn)的同時能過學(xué)生的小組合作探究來突破本節(jié)課的難點(diǎn),這樣,在小組合作學(xué)習(xí)與探究過程中實現(xiàn)教學(xué)目標(biāo)中對知識和能力的要求(目標(biāo)1,2,3)在如何用函數(shù)建模刻畫現(xiàn)實問題的基本過程中讓學(xué)生親身體驗函數(shù)應(yīng)用的廣泛性,同時提高學(xué)生探究學(xué)習(xí)新知識的興趣,培養(yǎng)學(xué)生主動參與、自主學(xué)習(xí)、勇于探索的科學(xué)態(tài)度,從而實現(xiàn)教學(xué)目標(biāo)中的德育目標(biāo)(目標(biāo)4)
【學(xué)生學(xué)習(xí)中預(yù)期的問題及解決方案預(yù)設(shè)】
①描點(diǎn)的規(guī)范性;②實際操作的速度;③解析式的計算速度④計算結(jié)束后不進(jìn)行檢驗
針對上述可能出現(xiàn)的問題,我在課前課上處理是,課前給學(xué)生準(zhǔn)備一些坐標(biāo)紙來提高描點(diǎn)的規(guī)范性,同時讓學(xué)生使用計算器利用小組討論來進(jìn)行多人合作以期提高相應(yīng)計算速度,在解析式得出后引導(dǎo)學(xué)生得出的標(biāo)準(zhǔn)應(yīng)該是只有一個的較好的,不能有很多的標(biāo)準(zhǔn),這樣以期引導(dǎo)學(xué)生想到對結(jié)果進(jìn)行篩選從而引出檢驗.
【教學(xué)用具】多媒體輔助教學(xué)(ppt、計算機(jī))。
【教學(xué)過程】
教學(xué)前言:
函數(shù)模型是應(yīng)用最廣泛的數(shù)學(xué)模型之一,許多實際問題一旦認(rèn)定是函數(shù)關(guān)系,就可以通過研究函數(shù)的性質(zhì)把握問題,使問題得到解決.
人
教版高一數(shù)學(xué)教案大全3
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
解三角形及應(yīng)用舉例
教學(xué)重難點(diǎn)
解三角形及應(yīng)用舉例
教學(xué)過程
一.基礎(chǔ)知識精講
掌握三角形有關(guān)的定理
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);
利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.
二.問題討論
思維點(diǎn)撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.
思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理.在求值時,要利用三角函數(shù)的有關(guān)性質(zhì).
例6:在某海濱城市附近海面有一臺風(fēng),據(jù)檢測,當(dāng)前臺
風(fēng)中心位于城市O(如圖)的東偏南方向
300km的海面P處,并以20km/h的速度向西偏北的
方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,
并以10km/h的速度不斷增加,問幾小時后該城市開始受到
臺風(fēng)的侵襲。
一.小結(jié):
1.利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問題常用的手段.
三.作業(yè):P80闖關(guān)訓(xùn)練
人教版高一數(shù)學(xué)教案大全4
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運(yùn)用這些知識解決一些基本問題.
教學(xué)重難點(diǎn)
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運(yùn)用這些知識解決一些基本問題.
教學(xué)過程
等比數(shù)列性質(zhì)請同學(xué)們類比得出.
【方法規(guī)律】
1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運(yùn)算題.方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法.
2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個實數(shù)
a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)
3、在求等差數(shù)列前n項和的(小)值時,常用函數(shù)的思想和方法加以解決.
【示范舉例】
例1:(1)設(shè)等差數(shù)列的前n項和為30,前2n項和為100,則前3n項和為.
(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=.
例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù).
例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項.
人教版高一數(shù)學(xué)教案大全5
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1、數(shù)學(xué)知識:掌握等比數(shù)列的概念,通項公式,及其有關(guān)性質(zhì);
2、數(shù)學(xué)能力:通過等差數(shù)列和等比數(shù)列的類比學(xué)習(xí),培養(yǎng)學(xué)生類比歸納的能力;
歸納——猜想——證明的數(shù)學(xué)研究方法;
3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類討論,函數(shù)的數(shù)學(xué)思想。
教學(xué)重難點(diǎn)
重點(diǎn):等比數(shù)列的概念及其通項公式,如何通過類比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;
難點(diǎn):等比數(shù)列的性質(zhì)的探索過程。
教學(xué)過程
教學(xué)過程:
1、問題引入:
前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。
問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?
(學(xué)生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。
已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。
師:事實上,等差數(shù)列的關(guān)鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
(第一次類比)類似的,我們提出這樣一個問題。
問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。
(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)
2、新課:
1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。
師:這就牽涉到等比數(shù)列的通項公式問題,回憶一下等差數(shù)列的通項公式是怎樣得到的?類似于等差數(shù)列,要想確定一個等比數(shù)列的通項公式,要知道什么?
師生共同簡要回顧等差數(shù)列的通項公式推導(dǎo)的方法:累加法和迭代法。
公式的推導(dǎo):(師生共同完成)
若設(shè)等比數(shù)列的公比為q和首項為a1,則有:
方法一:(累乘法)
3)等比數(shù)列的性質(zhì):
下面我們一起來研究一下等比數(shù)列的性質(zhì)
通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。
問題4:如果{an}是一個等差數(shù)列,它有哪些性質(zhì)?
(根據(jù)學(xué)生實際情況,可引導(dǎo)學(xué)生通過具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。__
答案:1458或128。
例2、正項等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.
例3、已知一個等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,能否在這個數(shù)列中取出一些項組成一個新的數(shù)列{cn},使得{cn}是一個公比為2的等比數(shù)列,若能請指出{cn}中的第k項是等差數(shù)列中的第幾項?
(本題為開放題,沒有的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關(guān)鍵是對通項公式的理解)
1、小結(jié):
今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項公式、以及它的性質(zhì),通過今天的學(xué)習(xí)
我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識,更重要的是我們學(xué)會了由類比——猜想——證明的科學(xué)思維的過程。
2、作業(yè):
P129:1,2,3
思考題:在等差數(shù)列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些項:6,12,24,48,……,組成一個新的數(shù)列{cn},{cn}是一個公比為2的等比數(shù)列,請指出{cn}中的第k項是等差數(shù)列中的第幾項?