高一數(shù)學教案大全電子版
編寫教案的過程也是教師學習和成長的過程,優(yōu)秀的教案能夠促進教師專業(yè)成長。優(yōu)秀的高一數(shù)學教案大全電子版是什么樣的?下面給大家?guī)砀咭粩?shù)學教案大全電子版,供大家參考。
高一數(shù)學教案大全電子版篇1
高中數(shù)學第一冊(上)1.1集合(一)教學案例教學目標:1、理解集合、集合的元素的概念;2、了解集合的元素的三個特性;3、記憶常用數(shù)集的表示;4、會判斷元素與集合的關(guān)系,
集合(一)教學案例。教學重點:1、集合的概念;2、集合的元素的三個特征性質(zhì)教學難點:1、集合的元素的三個特性;2、數(shù)集與數(shù)集的關(guān)系課前準備:1、教具準備:多媒體制作數(shù)學家康托介紹,包括頭像、生平、對數(shù)學發(fā)展所作的貢獻;本節(jié)課所需的例題、圖形等。2、布置學生預習1.1集合.教學設計:一、[創(chuàng)設情境]多媒體展示激發(fā)興趣:為科學而瘋的人——康托托康(Contor,Georg)(1845-1918),俄羅斯—德國數(shù)學家、19世紀數(shù)學偉大成就之一—集合論的創(chuàng)立人。康托生於俄國聖彼得堡,父母親是丹__人,父親出生於丹__首都哥本哈根,是一個富裕的商人,他的母親瑪麗具有藝術(shù)家血統(tǒng),他父母親年輕時移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因為康托多次改變國籍,許多國家都認為康托的成就都是它們培養(yǎng)出來的。康托自幼對數(shù)學有濃厚興趣。23歲獲博士學位,以后一直從事數(shù)學教學與研究。他所創(chuàng)立的集合論已被公認為全部數(shù)學的基礎。1874年康托的有關(guān)無窮的概念,震撼了知識界。康托憑借古代與中世紀哲學著作中關(guān)于無限的思想而導出了關(guān)于數(shù)的本質(zhì)新的思想模式,建立了處理數(shù)學中的無限的基本技巧,從而極大地推動了分析與邏輯的發(fā)展。他研究數(shù)論和用三角函數(shù)地表示函數(shù)等問題,發(fā)現(xiàn)了驚人的結(jié)果:證明有理數(shù)是可列的,而全體實數(shù)是不可列的。由于研究無窮時往往推出一些合乎邏輯的但又荒謬的結(jié)果(稱為“悖論”),許多大數(shù)學家唯恐陷進去而采取退避三舍的態(tài)度。在1874—1876年期間,不到30歲的康托向神秘的無窮宣戰(zhàn)。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內(nèi)的點與太平洋面上的點,以及整個地球內(nèi)部的點都“一樣多”,后來幾年,康托對這類“無窮集合”問題發(fā)表了一系列文章,通過嚴格證明得出了許多驚人的結(jié)論。康托的創(chuàng)造性工作與傳統(tǒng)的數(shù)學觀念發(fā)生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托的集合論是一種“疾病”,康托的概念是“霧中之霧”,甚至說康托是“瘋子”.來自數(shù)學__們的巨大精神壓力終于摧垮了康托,使他心力交瘁,患了精神__癥,被送進精神病醫(yī)院.他在集合論方面許多非常出色的成果,都是在精神病發(fā)作的間歇時期獲得的.真金不怕火煉,康托的思想終于大放光彩。1897年舉行的第一次國際數(shù)學家會議上,他的成就得到承認,偉大的哲學家、數(shù)學家羅素稱贊康托的工作“可能是這個代所能夸耀的最巨大的工作。”可是這時康托仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托在一家精神病院去世。今天,我們將學習高中數(shù)學第一章集合與簡易邏輯的1.1集合(一),讓我們回顧一下初中涉及到集合的有關(guān)知識。二、[復習舊知識]復習提問:1.在初中,我們學過哪些集合?實數(shù)集、二元一次方程的解集、不等式(組)的解集、點的集合等。2.在初中,我們用集合描述過什么?角平分線、線段的垂直平分線、圓、圓的內(nèi)部、圓的外部等。
實數(shù)有理數(shù)無理數(shù)整數(shù)分數(shù)正無理數(shù)負無理數(shù)正分數(shù)負分數(shù)負整數(shù)自然數(shù)正整數(shù)零3.實數(shù)的分類3、實數(shù)的分類:
實數(shù)正實數(shù)負實數(shù)零
4、以下由學生完成:(1)、把下列各數(shù)填入相應的圈內(nèi)
0、、2.5、、、-6、、8%、19
整數(shù)集合分數(shù)集合無理數(shù)集合
(2).把下列各數(shù)填入相應的大括號內(nèi)1、-10、、、-2、3.6、、—0.1、8、負有理數(shù)集合:{}
整數(shù)集合:{}
正實數(shù)集:{}
無理數(shù)集:{}
3.解不等式組(1)2x-3〈5
4.絕對值小于3的整數(shù)是—————————————————三、[學習互動]1、觀察下列對象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)與一個角的兩邊距離相等的點;(4)滿足x-3>2的全體實數(shù);(5)本班全體男生;(6)我國古代四大發(fā)明;(7)2007年本省高考考試科目;(8)2008年奧運會的球類項目,
《集合(一)教學案例》通過學生觀察以上對象后,教師提問:[集合的概念](1)集合是什么?某些指定的對象集在一起就成為一個集合,簡稱集。(2)什么是集合的元素?集合中的每個對象叫做這個集合的元素。(3)集合、集合的元素怎樣表示?一般用大括號表示集合且常用大寫字母表示;集合中的元素用小寫字母表示。(4)集合中的元素與集合的關(guān)系a是集合A的元素,稱a屬于A,記作a∈A;a不是集合A的元素,稱a不屬于A,記作aA。2、探討下列問題(1){1,2,2,3}是含有1個1、2個2、1個3的集合嗎?(2)的科學家能構(gòu)成一個集合嗎?(3){a,b,c,d}與{b,c,d,a}是否表同一個集合?通過師生共同探討得出下面結(jié)論:通過師生共同探討得出結(jié)論:[集合中的元素的性質(zhì)]確定性:集合中的元素必須是確定的。集合的元素的特點互異性:集合中的元素必須是互異的。無序性:集合中的元素是無先后順序的。組成集合的元素可以是:數(shù)、圖、人、事物等。[常用數(shù)集的表示](1)自然數(shù)集:用N表示(2)正整數(shù)集:用N﹡或N+表示(3)整數(shù)集:用Z表示(4)有理數(shù)集:用Q表示(5)實數(shù)集:用R表示(正實數(shù)集用R__或R+表示)四、[四、[互動參與]例1下面的各組對象能否構(gòu)成集合是()(A)所有的好人(B)小于2004的實數(shù)(C)和2004非常接近的數(shù)(D)方程x2-3x+2=0的根例2用符號填空(1)3.14Q(2)πQ(3)0N+(4)0N
32(5)(-2)0N__(6)Q
3232(7)Z(8)—R
五、[分層議練]1、選擇題(1)下列不能形成集合的是()A、所有三角形B、《高一數(shù)學》中的所有難題C、大于π的整數(shù)D、所以的無理數(shù)2、判斷正誤(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,則xN()(3)若xQ,則xR()(4)若xN,則xN+()
常用數(shù)集屬于a∈AN、N__(或N+)、Z、Q、R。集合集合的概念元素與集合的關(guān)系集合中元素的性質(zhì)確定性互異性無序性不屬于aA
本節(jié)課設計的目的:通過創(chuàng)設情境激發(fā)學生的學習興趣,課前預習培養(yǎng)學生的自學能力;多媒體輔助教學提高課堂效益,使教學呈現(xiàn)方式多樣化;探索現(xiàn)代教學手段與高中數(shù)學教學的整合。
高一數(shù)學教案大全電子版篇2
【學習目標】
1、感受數(shù)學探索的成功感,提高學習數(shù)學的興趣;
2、經(jīng)歷誘導公式的探索過程,感悟由未知到已知、復雜到簡單的數(shù)學轉(zhuǎn)化思想。
3、能借助單位圓的對稱性理解記憶誘導公式,能用誘導公式進行簡單應用。
【學習重點】三角函數(shù)的誘導公式的理解與應用
【學習難點】誘導公式的推導及靈活運用
【知識鏈接】(1)單位圓中任意角α的正弦、余弦的定義
(2)對稱性:已知點P(x,),那么,點P關(guān)于x軸、軸、原點對稱的點坐標
【學習過程】
一、預習自學
閱讀書第19頁——20頁內(nèi)容,通過對-α、π-α、π+α、2π-α、α的終邊與單位圓的交點的對稱性規(guī)律的探究,結(jié)合單位圓中任意角的正弦、余弦的定義,從中自我發(fā)現(xiàn)歸納出三角函數(shù)的誘導公式,并寫出下列關(guān)系:
(1)-407[導學案]4.4單位圓的對稱性與誘導公式與407[導學案]4.4單位圓的對稱性與誘導公式的正弦函數(shù)、余弦函數(shù)關(guān)系
(2)角407[導學案]4.4單位圓的對稱性與誘導公式與角407[導學案]4.4單位圓的對稱性與誘導公式的正弦函數(shù)、余弦函數(shù)關(guān)系
(3)角407[導學案]4.4單位圓的對稱性與誘導公式與角407[導學案]4.4單位圓的對稱性與誘導公式的正弦函數(shù)、余弦函數(shù)關(guān)系
(4)角407[導學案]4.4單位圓的對稱性與誘導公式與角407[導學案]4.4單位圓的對稱性與誘導公式的正弦函數(shù)、余弦函數(shù)關(guān)系
二、合作探究
探究1、求下列函數(shù)值,思考你用到了哪些三角函數(shù)誘導公式?試總結(jié)一下求任意角的三角函數(shù)值的過程與方法。
(1)407[導學案]4.4單位圓的對稱性與誘導公式(2)407[導學案]4.4單位圓的對稱性與誘導公式(3)sin(-1650°);
探究2:化簡:407[導學案]4.4單位圓的對稱性與誘導公式407[導學案]4.4單位圓的對稱性與誘導公式(先逐個化簡)
探究3、利用單位圓求滿足407[導學案]4.4單位圓的對稱性與誘導公式的角的集合。
三、學習小結(jié)
(1)你能說說化任意角的正(余)弦函數(shù)為銳角正(余)弦函數(shù)的一般思路嗎?
(2)本節(jié)學習涉及到什么數(shù)學思想方法?
(3)我的疑惑有
【達標檢測】
1、在單位圓中,角α的終邊與單位圓交于點P(-407[導學案]4.4單位圓的對稱性與誘導公式,407[導學案]4.4單位圓的對稱性與誘導公式),
則sin(-α)=;cs(α±π)=;cs(π-α)=
2.求下列函數(shù)值:
(1)sin(407[導學案]4.4單位圓的對稱性與誘導公式)=;(2)cs210&rd;=
3、若csα=-1/2,則α的集合S=
高一數(shù)學教案大全電子版篇3
教學類型:探究研究型
設計思路:通過一系列的猜想得出德.摩根律,但是這個結(jié)論僅僅是猜想,數(shù)學是一門科學,所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課.
教學過程:
一、片頭
內(nèi)容:現(xiàn)在讓我們一起來學習《集合的運算——自己探索也能發(fā)現(xiàn)的&39;數(shù)學規(guī)律(第二講)》。
二、正文講解
1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)。”
上節(jié)課老師和大家學習了集合的運算,得出了一個有趣的規(guī)律。課后,你舉例驗證了這個規(guī)律嗎?
那么,這個規(guī)律是偶然的,還是一個恒等式呢?
2.規(guī)律的驗證:
試用集合A,B的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用
3.抽象概括:通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。
而這個規(guī)律就是180年前的英國數(shù)學家德摩根發(fā)現(xiàn)的。
為了紀念他,我們將它稱為德摩根律。
原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學規(guī)律。
4.例題應用:使用例題形式,將的德摩根定律的結(jié)論加以應用,讓學生更加熟悉集合的運算
三、結(jié)尾
通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運算問題提供了更為簡便的方法。
希望你在今后的學習中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。
高一數(shù)學教案大全電子版篇4
第一節(jié)集合的含義與表示
學時:1學時
[學習引導]
一、自主學習
1.閱讀課本.
2.回答問題:
⑴本節(jié)內(nèi)容有哪些概念和知識點?
⑵嘗試說出相關(guān)概念的含義?
3完成練習
4小結(jié)
二、方法指導
1、要結(jié)合例子理解集合的概念,能說出常用的數(shù)集的名稱和符號。
2、理解集合元素的特性,并會判斷元素與集合的關(guān)系
3、掌握集合的表示方法,并會正確運用它們表示一些簡單集合。
4、在學習中要特別注意理解空集的意義和記法
[思考引導]
一、提問題
1.集合中的元素有什么特點?
2、集合的常用表示法有哪些?
3、集合如何分類?
4.元素與集合具有什么關(guān)系?如何用數(shù)學語言表述?
5集合和是否相同?
二、變題目
1.下列各組對象不能構(gòu)成集合的是()
A.北京大學2008級新生
B.26個英文字母
C.著名的藝術(shù)家
D.2008年北京奧運會中所設定的比賽項目
2.下列語句:①0與表示同一個集合;
②由1,2,3組成的集合可表示為或;
③方程的解集可表示為;
④集合可以用列舉法表示。
其中正確的是()
A.①和④B.②和③
C.②D.以上語句都不對
[總結(jié)引導]
1.集合中元素的三特性:
2.集合、元素、及其相互關(guān)系的數(shù)學符號語言的表示和理解:
3.空集的含義:
[拓展引導]
1.課外作業(yè):習題11第題;
2.若集合,求實數(shù)的值;
3.若集合只有一個元素,則實數(shù)的值為;若為空集,則的取值范圍是.
撰稿:程曉杰審稿:宋慶
高一數(shù)學教案大全電子版篇5
一、教學目標
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導:觀察、動手實踐、討論、類比。
四、教學過程
(一)創(chuàng)設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側(cè)看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本P15練習1、2;P20習題1.2[A組]2。
(四)歸納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本P20習題1.2[A組]1。
高一數(shù)學教案大全電子版篇6
教學目標
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。
教學重難點
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。
教學過程
等比數(shù)列性質(zhì)請同學們類比得出。
【方法規(guī)律】
1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題。方程觀點是解決這類問題的基本數(shù)學思想和方法。
2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義。特別地,在判斷三個實數(shù)a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)
3、在求等差數(shù)列前n項和的(小)值時,常用函數(shù)的思想和方法加以解決。
【示范舉例】
例1:(1)設等差數(shù)列的前n項和為30,前2n項和為100,則前3n項和為。
(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=。
例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù)。
例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項。
高一數(shù)學教案大全電子版篇7
教學準備
教學目標
1.掌握平面向量的數(shù)量積及其幾何意義;
2.掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3.了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數(shù)量積定義
教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用
教學工具
投影儀
教學過程
一、復習引入:
1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ
五,課堂小結(jié)
(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
六、課后作業(yè)
P107習題2.4A組2、7題
課后小結(jié)
(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學思想方法有那些?
(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
課后習題
作業(yè)
P107習題2.4A組2、7題
板書
略
高一數(shù)學教案大全電子版篇8
(一)教學目標
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結(jié)果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關(guān)的術(shù)語和符號,并會用它們正確進行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質(zhì)與內(nèi)涵,增強學生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.
3.情感、態(tài)度與價值觀
通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學生運用數(shù)學知識和數(shù)學思想認識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學的應用價值.
(二)教學重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認識符號之間的區(qū)別與聯(lián)系
(三)教學方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結(jié)合.
(四)教學過程
教學環(huán)節(jié)教學內(nèi)容師生互動設計意圖
提出問題引入新知思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進行類似“加法”運算.
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}
(2)A={x|x是有理數(shù)},
B={x|x是無理數(shù)},
C={x|x是實數(shù)}.
師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實數(shù)能進行加減運算,探究集合是否有相應運算.
生:集合A與B的元素合并構(gòu)成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算.生疑析疑,
導入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合.稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B={x|x∈A,或x∈B},Venn圖表示為:
師:請同學們將上述兩組實例的共同規(guī)律用數(shù)學語言表達出來.
學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義.在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應用舉例例1設A={4,5,6,8},B={3,5,7,8},求A∪B.
例2設集合A={x|–1<x<2},集合b={x|1<x<3},求a∪b.< p="">
例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.
例2解:A∪B={x|–1<x<2}∪{x|1<x<3}={x=–1<x<3}.< p="">
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數(shù)軸,運用數(shù)形結(jié)合思想求解.
生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間.同時注意集合元素的互異性.學生嘗試求解,老師適時適當指導,評析.
固化概念
提升能力
探究性質(zhì)①A∪A=A,②A∪=A,
③A∪B=B∪A,
④∪B,∪B.
老師要求學生對性質(zhì)進行合理解釋.培養(yǎng)學生數(shù)學思維能力.
形成概念自學提要:
①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
②交集運算具有的運算性質(zhì)呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B={x|x∈A且x∈B}
Venn圖表示
老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義.并總結(jié)交集的性質(zhì).
生:①A∩A=A;
②A∩=;
③A∩B=B∩A;
④A∩,A∩.
師:適當闡述上述性質(zhì).
自學輔導,合作交流,探究交集運算.培養(yǎng)學生的自學能力,為終身發(fā)展培養(yǎng)基本素質(zhì).
應用舉例例1(1)A={2,4,6,8,10},
B={3,5,8,12},C={8}.
(2)新華中學開運動會,設
A={x|x是新華中學高一年級參加百米賽跑的同學},
B={x|x是新華中學高一年級參加跳高比賽的同學},求A∩B.
例2設平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關(guān)系.學生上臺板演,老師點評、總結(jié).
例1解:(1)∵A∩B={8},
∴A∩B=C.
(2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合.所以,A∩B={x|x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.
例2解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為L1∩L2={點P};
(2)直線l1,l2平行可表示為
L1∩L2=;
(3)直線l1,l2重合可表示為
L1∩L2=L1=L2.提升學生的動手實踐能力.
歸納總結(jié)并集:A∪B={x|x∈A或x∈B}
交集:A∩B={x|x∈A且x∈B}
性質(zhì):①A∩A=A,A∪A=A,
②A∩=,A∪=A,
③A∩B=B∩A,A∪B=B∪A.學生合作交流:回顧→反思→總理→小結(jié)
老師點評、闡述歸納知識、構(gòu)建知識網(wǎng)絡
課后作業(yè)1.1第三課時習案學生獨立完成鞏固知識,提升能力,反思升華
備選例題
例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.
【解析】法一:∵A∩B={–2},∴–2∈B,
∴a–1=–2或a+1=–2,
解得a=–1或a=–3,
當a=–1時,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.
當a=–3時,A={–1,10,6},A不合要求,a=–3舍去
∴a=–1.
法二:∵A∩B={–2},∴–2∈A,
又∵a2+1≥1,∴a2–3=–2,
解得a=±1,
當a=1時,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.
當a=–1時,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.
例2集合A={x|–1<x<1},b={x|x<a},< p="">
(1)若A∩B=,求a的取值范圍;
(2)若A∪B={x|x<1},求a的取值范圍.
【解析】(1)如下圖所示:A={x|–1<x<1},b={x|x<a},且a∩b=,< p="">
∴數(shù)軸上點x=a在x=–1左側(cè).
∴a≤–1.
(2)如右圖所示:A={x|–1<x<1},b={x|x<a}且a∪b={x|x<1},< p="">
∴數(shù)軸上點x=a在x=–1和x=1之間.
∴–1<a≤1.< p="">
例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何實數(shù)時,A∩B與A∩C=同時成立?
【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}.
由A∩B和A∩C=同時成立可知,3是方程x2–ax+a2–19=0的解.將3代入方程得a2–3a–10=0,解得a=5或a=–2.
當a=5時,A={x|x2–5x+6=0}={2,3},此時A∩C={2},與題設A∩C=相矛盾,故不適合.
當a=–2時,A={x|x2+2x–15=0}={3,5},此時A∩B與A∩C=,同時成立,∴滿足條件的實數(shù)a=–2.
例4設集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B.
【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5.
當x=3時,A={9,5,–4},B={–2,–2,9},B中元素違背了互異性,舍去.
當x=–3時,A={9,–7,–4},B={–8,4,9},A∩B={9}滿足題意,故A∪B={–7,–4,–8,4,9}.
當x=5時,A={25,9,–4},B={0,–4,9},此時A∩B={–4,9}與A∩B={9}矛盾,故舍去.
綜上所述,x=–3且A∪B={–8,–4,4,–7,9}.
高一數(shù)學教案大全電子版篇9
一、教材分析
(一)地位與作用
數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數(shù)學問題的合作探究能力。
(4)學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯(lián)系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學情分析,本節(jié)課教學應實現(xiàn)如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學生領(lǐng)會數(shù)形結(jié)合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
(3)情感態(tài)度與價值觀
在函數(shù)單調(diào)性的學習過程中,使學生體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。
(二)重點難點
本節(jié)課的教學重點是________________________,教學難點是_____________________。
三、教法、學法分析
(一)教法
基于本節(jié)課的內(nèi)容特點和學生的年齡特征,按照__市高中數(shù)學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現(xiàn)本節(jié)課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)學生求知欲,調(diào)動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹?shù)耐评恚㈨樌赝瓿蓵姹磉_.
(二)學法
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的質(zhì)的飛躍。
2、讓學生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
高一數(shù)學教案大全電子版篇10
本學期我擔任高一的英語教學工作,任教班級分別為高一440班和438班。為了更好的進行教學,明確教學任務,特制定此教學計劃,以促進教學工作。以教學大綱,新課改的具體要求為依據(jù),根據(jù)本屆高一學生的具體學情,制定全面的、系統(tǒng)的、針對性強的教學計劃,從高一抓起,充分提高我校學生的英語基礎水平。認真研讀課本,謙虛而積極地向優(yōu)秀的同行學習,收集相關(guān)資料信息,密切關(guān)注高考動態(tài)對本屆高一學生發(fā)展的影響,從而作出最快的調(diào)整,使教學工作不偏離方向,有效提高教學質(zhì)量。聯(lián)系學生的實際情況,充分調(diào)動學生的學習積極性和自主性,盡努力讓學生主導課堂,教師引導課堂,雙管齊下,扎扎實實學好基礎,并提高學生的綜合素質(zhì)和解題技巧,以適應新的形勢和要求。
一、學生現(xiàn)狀分析
這2個班級是普通班,兩個班級的平均水平相差不大,底子薄弱的同學比例大。不少同學的學習態(tài)度還沒轉(zhuǎn)變,學習方法也須慢慢糾正。學生中有這樣一種頑劣思想,"現(xiàn)在離高考還早著呢,玩得開心最重要,以后大不了再臨時抱佛腳"。學生上課效率低,作業(yè)馬虎甚至不交,課外時間全部放在休閑游戲上,上課睡覺或者無所事事的現(xiàn)象時有發(fā)生。還有一些學生則是由于缺乏堅持不懈的毅力,不喜歡背誦、記憶,只滿足于課堂上聽聽課,課后沒有復習、課前沒有預習,導致英語成績提高緩慢。
二、教學措施
1.教學目標:高一年級是高中的重要階段,又是高中三年學習打好基礎的關(guān)鍵時期。因此,讓學生在高一階段扎實地掌握基礎對其今后學業(yè)發(fā)展極其重要。在本學期內(nèi),我期望達到以下目標:鞏固擴大基礎知識,培養(yǎng)口頭和書面初步運用英語進行交際的能力,側(cè)重培養(yǎng)閱讀能力,發(fā)展智力,培養(yǎng)自學能力。協(xié)助學生通過學業(yè)水平測試。
2.教學方法與措施
(1)幫助學生養(yǎng)成良好的學習習慣,指導他們掌握有效的學習方法。堅持每天朗讀,學會背誦的有效方法;利用每天的零碎時間反復多記憶單詞,學會記憶單詞的多種方法;學會觀察語言現(xiàn)象,總結(jié)語言規(guī)律(如通過例句總結(jié)出詞的詞性,用法等);養(yǎng)成良好的作業(yè)習慣,掌握各種解題技巧;堅持預習,鍛煉自學,積極思考,大膽質(zhì)疑;學會記筆記和整理錯題。
(2)強化詞匯、閱讀訓練。對于詞匯教學,運用詞匯聯(lián)想的記憶方法,拓展學習知識面。同時堅持不懈地積累詞匯量,不斷反復,及時鞏固。本學期繼續(xù)抓住統(tǒng)編教材的詞匯,同時適當擴大英文報刊的閱讀量,以擴大詞匯量、增強閱讀能力。短文閱讀是吸收信息、學習語言、提高水平的最有效途徑,因此,提高學生的閱讀理解能力是教學的重要目標之一。本學期將有計劃地堅持每周補充一份周報,包含單項選擇,完型填空,閱讀理解和改錯等內(nèi)容以輔助教學,并且除了配套的練習之外,每周有效選擇課外閱讀文章兩篇,讓學生在廣泛閱讀中提高閱讀理解能力。
(3)堅持對聽力訓練、寫作訓練常抓不懈,對學生平時的學習情況做好記錄與反饋。
(4)適當?shù)卣{(diào)整課堂,增加提問方式,適量地讓學生聽英文歌曲或簡單有趣的英語小故事,以提高學生的學習興趣。改變傳統(tǒng)教學模式,盡量做到讓學生教學生,更多地把課堂時間和空間留給學生。
高一數(shù)學教案大全電子版篇11
一、教材分析
1、教材的地位和作用
一元二次方程是中學教學的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學生學了實數(shù)與代數(shù)式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學習一元二次方程的基礎,通過一元二次方程的學習,就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學習(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎,此外,學習一元二次方程對其他學科也有重要的意義。
2、教學目標及確立目標的依據(jù)
九年義務教育大綱對這部分的要求是:“使學生了解一元二次方程的概念”,依據(jù)教學大綱的要求及教材的內(nèi)容,針對學生的理解和接受知識的實際情況,以提高學生的素質(zhì)為主要目的而制定如下教學目標。
知識目標:使學生進一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標:通過一元二次方程概念的教學,培養(yǎng)學生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學生創(chuàng)造性思維和邏輯推理的能力。
德育目標:培養(yǎng)學生把感性認識上升到理性認識的辯證唯物主義的觀點。
3、重點,難點及確定重難點的依據(jù)
“一元二次方程”有著承上啟下的作用,在今后的學習中有廣泛的應用,因此本節(jié)課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點。
二、教材處理
在教學中,我發(fā)現(xiàn)有的學生對概念背得很熟,但在準確和熟練應用方面較差,缺乏應變能力,針對學生中存在的這些問題,本節(jié)課突出對教學概念形成過程的教學,采用探索發(fā)現(xiàn)的方法研究概念,并引導學生進行創(chuàng)造性學習。
三、教學方法和學法
教學中,我運用啟發(fā)引導的方法讓學生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達到問題解決。
四、教學手段
采用投影儀
五、教學程序
1、新課導入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)
(2)列方程解應用題的方法,步驟?(并引例打基礎)
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實際問題引出一元二次方程,可以幫助學生認識到一元二次方程是來源于客觀需要的)
設出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程
高一數(shù)學教案大全電子版篇12
一元二次不等式的解法
教學目標
(1)掌握一元二次不等式的解法;
(2)知道一元二次不等式可以轉(zhuǎn)化為一元一次不等式組;
(3)了解簡單的分式不等式的解法;
(4)能利用二次函數(shù)與一元二次方程來求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系;
(5)能夠進行較簡單的分類討論,借助于數(shù)軸的直觀,求解簡單的含字母的一元二次不等式;
(6)通過利用二次函數(shù)的圖象來求解一元二次不等式的解集,培養(yǎng)學生的數(shù)形結(jié)合的數(shù)學思想;
(7)通過研究函數(shù)、方程與不等式之間的內(nèi)在聯(lián)系,使學生認識到事物是相互聯(lián)系、相互轉(zhuǎn)化的,樹立辨證的世界觀.
教學重點:一元二次不等式的解法;
教學難點:弄清一元二次不等式與一元二次方程、二次函數(shù)的關(guān)系.
教與學過程設計
第一課時
Ⅰ.設置情境
問題:
①解方程
②作函數(shù) 的圖像
③解不等式
【置疑】在解決上述三問題的基礎上分析,一元一次函數(shù)、一元一次方程、一元一次不等式之間的關(guān)系。能通過觀察一次函數(shù)的圖像求得一元一次不等式的解集嗎?
【回答】函數(shù)圖像與x軸的交點橫坐標為方程的根,不等式 的解集為函數(shù)圖像落在x軸上方部分對應的橫坐標。能。
通過多媒體或其他載體給出下列表格。扼要講解怎樣通過觀察一次函數(shù)的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運用
在這里我們發(fā)現(xiàn)一元一次方程,一次不等式與一次函數(shù)三者之間有著密切的聯(lián)系。利用這種聯(lián)系(集中反映在相應一次函數(shù)的圖像上!)我們可以快速準確地求出一元一次不等式的解集,類似地,我們能不能將現(xiàn)在要求解的一元二次不等式與二次函數(shù)聯(lián)系起來討論找到其求解方法呢?
Ⅱ.探索與研究
我們現(xiàn)在就結(jié)合不等式 的求解來試一試。(師生共同活動用“特殊點法”而非課本上的“列表描點”的方法作出 的圖像,然后請一位程度中下的同學寫出相應一元二次方程及一元二次不等式的解集。)
【答】方程 的解集為
不等式 的解集為
【置疑】哪位同學還能寫出 的解法?(請一程度差的同學回答)
【答】不等式 的解集為
我們通過二次函數(shù) 的圖像,不僅求得了開始上課時我們還不知如何求解的那個第(5)小題 的解集,還求出了 的解集,可見利用二次函數(shù)的圖像來解一元二次不等式是個十分有效的方法。
下面我們再對一般的一元二次不等式 與 來進行討論。為簡便起見,暫只考慮 的情形。請同學們思考下列問題:
如果相應的一元二次方程 分別有兩實根、惟一實根,無實根的話,其對應的二次函數(shù) 的圖像與x軸的位置關(guān)系如何?(提問程度較好的學生)
【答】二次函數(shù) 的圖像開口向上且分別與x軸交于兩點,一點及無交點。
現(xiàn)在請同學們觀察表中的二次函數(shù)圖,并寫出相應一元二次不等式的解集。(通過多媒體或其他載體給出以下表格)
【答】 的解集依次是
的解集依次是
它是我們今后求解一元二次不等式的主要工具。應盡快將表中的結(jié)果記住。其關(guān)鍵就是抓住相應二次函數(shù) 的圖像。
課本第19頁上的例1.例2.例3.它們均是求解二次項系數(shù) 的一元二次不等式,卻都沒有給出相應二次函數(shù)的圖像。其解答過程雖很簡練,卻不太直觀。現(xiàn)在我們在課本預留的位置上分別給它們補上相應二次函數(shù)圖像。
(教師巡視,重點關(guān)注程度稍差的同學。)
Ⅲ.演練反饋
1.解下列不等式:
(1) (2)
(3) (4)
2.若代數(shù)式 的值恒取非負實數(shù),則實數(shù)x的取值范圍是 。
3.解不等式
(1) (2)
參考答案:
1.(1) ;(2) ;(3) ;(4)R
2.
3.(1)
(2)當 或 時, ,當 時,
當 或 時, 。
Ⅳ.總結(jié)提煉
這節(jié)課我們學習了二次項系數(shù) 的一元二次不等式的解法,其關(guān)鍵是抓住相應二次函數(shù)的圖像與x軸的交點,再對照課本第39頁上表格中的結(jié)論給出所求一元二次不等式的解集。
(五)、課時作業(yè)
(P20.練習等3、4兩題)
(六)、板書設計
第二課時
Ⅰ.設置情境
(通過講評上一節(jié)課課后作業(yè)中出現(xiàn)的問題,復習利用“三個二次”間的關(guān)系求解一元二次不等式的主要操作過程。)
上節(jié)課我們只討論了二次項系數(shù) 的一元二次不等式的求解問題。肯定有同學會問,那么二次項系數(shù) 的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?
Ⅱ.探索研究
(學生議論紛紛.有的說仍然利用二次函數(shù)的圖像,有的說將二次項的系數(shù)變?yōu)檎龜?shù)后再求解,…….教師分別請持上述見解的學生代表進一步說明各自的見解.)
生甲:只要將課本第39頁上表中的二次函數(shù)圖像次依關(guān)于x軸翻轉(zhuǎn)變成開口向下的拋物線,再根據(jù)可得的圖像便可求得二次項系數(shù) 的一元二次不等式的解集.
生乙:我覺得先在不等式兩邊同乘以-1將二次項系數(shù)變?yōu)檎龜?shù)后直接運用上節(jié)課所學的方法求解就可以了.
師:首先,這兩種見解都是合乎邏輯和可行的.不過按前一見解來操作的話,同學們則需再記住一張類似于第39頁上的表格中的各結(jié)論.這不但加重了記憶負擔,而且兩表中的結(jié)論容易搞混導致錯誤.而按后一種見解來操作時則不存在這個問題,請同學們閱讀第19頁例4.
(待學生閱讀完畢,教師再簡要講解一遍.)
[知識運用與解題研究]
由此例可知,對于二次項系數(shù)的一元二次不等式是將其通過同解變形化為 的一元二次不等式來求解的,因此只要掌握了上一節(jié)課所學過的方法。我們就能求
解任意一個一元二次不等式了,請同學們求解以下兩不等式.(調(diào)兩位程度中等的學生演板)
(1) (2)
(分別為課本P21習題1.5中1大題(2)、(4)兩小題.教師講評兩位同學的解答,注意糾正表述方面存在的問題.)
訓練二 可化為一元一次不等式組來求解的不等式.
目前我們熟悉了利用“三個二次”間的關(guān)系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點麻煩.故在求解形如 (或 )的一元二次不等式時則根據(jù)(有理數(shù))乘(除)運算的“符號法則”化為同學們更加熟悉的一元一次不等式組來求解.現(xiàn)在清同學們閱讀課本P20上關(guān)于不等式 求解的內(nèi)容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學生閱讀完畢,請一程度較好,表達能力較強的學生回答該問題.)
【答】因為滿足不等式組 或 的x都能使原不等式 成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.
這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關(guān)系,故它們必相等,現(xiàn)在請同學們求解以下各不等式.(調(diào)三位程度各異的學生演板.教師巡視,重點關(guān)注程度較差的學生).
(1) [P20練習中第1大題]
(2) [P20練習中第1大題]
(3) [P20練習中第2大題]
(老師扼要講評三位同學的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).
例5 解不等式
因為(有理數(shù))積與商運算的“符號法則”是一致的,故求解此類不等式時,也可像求解 (或 )之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。
解:(略)
現(xiàn)在請同學們完成課本P21練習中第3、4兩大題。
(等學生完成后教師給出答案,如有學生對不上答案,由其本人追查原因,自行糾正。)
[訓練三]用“符號法則”解不等式的復式訓練。
(通過多媒體或其他載體給出下列各題)
1.不等式 與 的解集相同此說法對嗎?為什么[補充]
2.解下列不等式:
(1) [課本P22第8大題(2)小題]
(2) [補充]
(3) [課本P43第4大題(1)小題]
(4) [課本P43第5大題(1)小題]
(5) [補充]
(每題均先由學生說出解題思路,教師扼要板書求解過程)
參考答案:
1.不對。同 時前者無意義而后者卻能成立,所以它們的解集是不同的。
2.(1)
(2)原不等式可化為: ,即
解集為 。
(3)原不等式可化為
解集為
(4)原不等式可化為 或
解集為
(5)原不等式可化為: 或 解集為
Ⅲ.總結(jié)提煉
這節(jié)課我們重點講解了利用(有理數(shù))乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學們應掌握好這一方法。
(五)布置作業(yè)
(P22.2(2)、(4);4;5;6。)
(六)板書設計
高一數(shù)學教案大全電子版篇13
學習目標
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
一、預習檢查
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
二、問題探究
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習:已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據(jù)以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、
例3(理)求離心率為,且過點的雙曲線標準方程、
三、思維訓練
1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的斜率是、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則、
四、知識鞏固
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是、
2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為、
3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、
高一數(shù)學教案大全電子版篇14
教學目的:
掌握圓的標準方程,并能解決與之有關(guān)的問題
教學重點:
圓的標準方程及有關(guān)運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
1.說出下列圓的方程
⑴圓心(3,-2)半徑為5
⑵圓心(0,3)半徑為3
2.指出下列圓的圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3.判斷3x-4y-10=0和x2+y2=4的位置關(guān)系
4.圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)
練習:
1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結(jié)練習P771,2,3,4
五、作業(yè)P811,2,3,4
高一數(shù)學教案大全電子版篇15
學習重點:了解弧度制,并能進行弧度與角度的換算
學習難點:弧度的概念及其與角度的關(guān)系。
學習目標
①了解弧度制,能進行弧度與角度的換算。
②認識弧長公式,能進行簡單應用。對弧長公式只要求了解,會進行簡單應用,不必在應用方面加深。
③了解角的集合與實數(shù)集建立了一一對應關(guān)系,培養(yǎng)學生學會用函數(shù)的觀點分析、解決問題。
教學過程
一、自主學習
1、長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫)。這種度量角的單位制稱為。
2、正角的弧度數(shù)是數(shù),負角的弧度數(shù)是數(shù),零角的弧度數(shù)是。
3、角的弧度數(shù)的絕對值。(為弧長,為半徑)
4:完成特殊角的度數(shù)與弧度數(shù)的對應表。
角度030456090120
弧度
角度135150180210225240
弧度
角度270300315330360
弧度
5、扇形面積公式:。
二、師生互動
例1把化成弧度。
變式:把化成度。
小結(jié):在具體運算時,弧度二字和單位符號rad可省略,如:3表示3rad,sin表示rad角的正弦。
例2用弧度制表示:
(1)終邊在軸上的角的集合;
(2)終邊在軸上的角的集合。
變式:終邊在坐標軸上的角的集合。
例3、知扇形的周長為8,圓心角為2rad,,求該扇形的面積。
三、鞏固練習
1、若=—3,則角的終邊在()。
A、第一象限B、第二象限
C、第三象限D(zhuǎn)、第四象限
2、半徑為2的圓的圓心角所對弧長為6,則其圓心角為。
四、課后反思
五、課后鞏固練習
1、用弧度制表示終邊在下列位置的角的集合:
(1)直線y=x;(2)第二象限。
2、圓弧長度等于截其圓的內(nèi)接正三角形邊長,求其圓心角的弧度數(shù),并化為度表示。
高一數(shù)學教案大全電子版篇16
一、指導思想與理論依據(jù)
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教A版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與、、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
三、學情分析
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容.
四、教學目標
(1).基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;
(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數(shù)求值與化簡;
(3).創(chuàng)新素質(zhì)目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學思想,提高學生分析問題、解決問題的能力;
(4).個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
五、教學重點和難點
1.教學重點
理解并掌握誘導公式.
2.教學難點
正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
1.教法
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.
2.學法
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節(jié)課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現(xiàn)探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.
3.預期效果
本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.
七、教學流程設計
(一)創(chuàng)設情景
1.復習銳角300,450,600的三角函數(shù)值;
2.復習任意角的三角函數(shù)定義;
3.問題:由,你能否知道sin2100的值嗎?引如新課.
設計意圖
自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
(二)新知探究
1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
2.讓學生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關(guān)系;
3.Sin2100與sin300之間有什么關(guān)系.
設計意圖
由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
(三)問題一般化
探究一
1.探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點對稱;
2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標關(guān)于原點對稱;
3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.
設計意圖
首先應用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰(zhàn),敢于前進
(四)練習
利用誘導公式(二),口答下列三角函數(shù)值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
(五)問題變形
由sin3000=-sin600出發(fā),用三角的定義引導學生求出sin(-3000),Sin1500值,讓學生聯(lián)想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.學生自主探究
高一數(shù)學教案大全電子版篇17
一、教學目標
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡二次根式
3.通過本節(jié)的學習滲透分類討論的數(shù)學思想和方法
二、教學設計
對比、歸納、總結(jié)
三、重點和難點
1.重點:理解并掌握二次根式的性質(zhì)
2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
四、課時安排
1課時
五、教B具學具準備
投影儀、膠片、多媒體
六、師生互動活動設計
復習對比,歸納整理,應用提高,以學生活動為主
高一數(shù)學教案大全電子版篇18
教學目標
1.使學生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.教學建議
教材分析
(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產(chǎn)實際中有著廣泛的應用,所以應重點研究.
(2)本節(jié)的教學重點是在理解定義的基礎上掌握的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.