高二數(shù)學教案學生
高二數(shù)學教案學生都有哪些?數(shù)學是人類對事物的抽象結構和模式進行嚴格描述和推導的通用手段,可以應用于現(xiàn)實世界中的任何問題。所有數(shù)學對象本質上都是人為定義的。下面是小編為大家?guī)淼母叨?shù)學教案學生七篇,希望大家能夠喜歡!
高二數(shù)學教案學生(精選篇1)
教學目標:
1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。
2、在加權平均數(shù)中,知道權的差異對平均數(shù)的影響,并能用加權平均數(shù)解釋現(xiàn)實生活中一些簡單的現(xiàn)象。
3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應用。
4、能利和計算器求一組數(shù)據(jù)的算術平均數(shù)。
教學重點:體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應用。
教學難點:對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應用。
教學方法:歸納教學法。
教學過程:
一、知識回顧與思考
1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。
一般地對于n個數(shù)X1,……Xn把(X1+X2+…Xn)叫做這n個數(shù)的算術平均數(shù),簡稱平均數(shù)。
如某公司要招工,測試內容為數(shù)學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績?yōu)閿?shù)學,語文、外語成績的加權平均數(shù),25%、25%、50%分別是數(shù)學、語文、外語三項測試成績的權。
中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。
眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)。
如3,2,3,5,3,4中3是眾數(shù)。
2、平均數(shù)、中位數(shù)和眾數(shù)的特征:
(1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。
(2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計算較繁。
(3)中位數(shù)的優(yōu)點是計算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。
(4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當一組數(shù)據(jù)中個別數(shù)據(jù)變動較大時,適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。
3、算術平均數(shù)和加權平均數(shù)有什么區(qū)別和聯(lián)系:
算術平均數(shù)是加權平均數(shù)的一種特殊情況,加權平均數(shù)包含算術平均數(shù),當加權平均數(shù)中的權相等時,就是算術平均數(shù)。
4、利用計算器求一組數(shù)據(jù)的平均數(shù)。
利用科學計算器求平均數(shù)的方法計算平均數(shù)。
二、例題講解:
例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下:
每人銷售件數(shù) 1800 510 250 210 150 120
人數(shù) 113532
(1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);
(2)假設銷售部負責人把每位營銷員的月銷售額定為平均數(shù),你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。
例2,某校規(guī)定:學生的平時作業(yè)、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業(yè)、期中練習、期末考試的數(shù)學成績依次為90分,92分,85分,小亮這學期的數(shù)學總評成績是多少?
三、課堂練習:復習題A組
四、小結:
1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計算。
2、理解算術平均數(shù)與加權平均數(shù)的聯(lián)系與區(qū)別。
五、作業(yè):復習題B組、C組(選做)
高二數(shù)學教案學生(精選篇2)
[學習目標]
(1)會用坐標法及距離公式證明Cα+β;
(2)會用替代法、誘導公式、同角三角函數(shù)關系式,由Cα+β推導Cα—β、Sα±β、Tα±β,切實理解上述公式間的關系與相互轉化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結構]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:
①cos(30°—90°)與cos30°—cos90°
②sin(30°+60°)和sin30°+sin60°。
我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數(shù)倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數(shù)是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數(shù)的特例。
高二數(shù)學教案學生(精選篇3)
一、教材分析
教材的地位和作用
期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學習期望將為今后學習概率統(tǒng)計知識做鋪墊。同時,它在市場預測,經濟統(tǒng)計,風險與決策等領域有著廣泛的應用,為今后學習數(shù)學及相關學科產生深遠的影響。
教學重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應用。
[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節(jié)課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學難點。
二、教學目標
[知識與技能目標]
通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標]
經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養(yǎng)學生歸納、概括等合情推理能力。
通過實際應用,培養(yǎng)學生把實際問題抽象成數(shù)學問題的能力和學以致用的數(shù)學應用意識。
[情感與態(tài)度目標]
通過創(chuàng)設情境激發(fā)學生學習數(shù)學的情感,培養(yǎng)其嚴謹治學的態(tài)度。在學生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。
三、教法選擇
引導發(fā)現(xiàn)法
四、學法指導
“授之以魚,不如授之以漁”,注重發(fā)揮學生的主體性,讓學生在學習中學會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。
高二數(shù)學教案學生(精選篇4)
教學目標:
①掌握對數(shù)函數(shù)的性質。
②應用對數(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復
合函數(shù)的定義域、值 域及單調性。
③ 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高
解題能力。
教學重點與難點:對數(shù)函數(shù)的性質的應用。
教學過程設計:
⒈復習提問:對數(shù)函數(shù)的概念及性質。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調性取決于底的大小:當0
調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞
增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9
Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:①構造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關系來比大小。
2 函數(shù)的定義域, 值 域及單調性。
高二數(shù)學教案學生(精選篇5)
函數(shù)思想在解題中的應用主要表現(xiàn)在兩個方面:一是借助有關初等函數(shù)的性質,解有關求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關系式或構造中間函數(shù),把所研究的問題轉化為討論函數(shù)的有關性質,達到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學數(shù)學的基本思想,也是歷年高考的重點。
1.函數(shù)的思想,是用運動和變化的觀點,分析和研究數(shù)學中的數(shù)量關系,建立函數(shù)關系或構造函數(shù),運用函數(shù)的圖像和性質去分析問題、轉化問題,從而使問題獲得解決。
2.方程的思想,就是分析數(shù)學問題中變量間的等量關系,建立方程或方程組,或者構造方程,通過解方程或方程組,或者運用方程的性質去分析、轉化問題,使問題獲得解決。方程思想是動中求靜,研究運動中的等量關系;
3.函數(shù)方程思想的幾種重要形式
(1)函數(shù)和方程是密切相關的,對于函數(shù)y=f(x),當y=0時,就轉化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。
(2)函數(shù)與不等式也可以相互轉化,對于函數(shù)y=f(x),當y>0時,就轉化為不等式f(x)>0,借助于函數(shù)圖像與性質解決有關問題,而研究函數(shù)的性質,也離不開解不等式;
(3)數(shù)列的通項或前n項和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點處理數(shù)列問題十分重要;
(4)函數(shù)f(x)=(1+x)^n (n∈N_)與二項式定理是密切相關的,利用這個函數(shù)用賦值法和比較系數(shù)法可以解決很多二項式定理的問題;
(5)解析幾何中的許多問題,例如直線和二次曲線的位置關系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關理論;
(6)立體幾何中有關線段、角、面積、體積的計算,經常需要運用布列方程或建立函數(shù)表達式的方法加以解決。
高二數(shù)學教案學生(精選篇6)
【學習導航】
(一)兩角和與差公式
(二)倍角公式
2cos2α=1+cos2α 2sin2α=1-cos2α
注意:倍角公式揭示了具有倍數(shù)關系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。
注: (1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對公式會“正用”,“逆用”,“變形使用”;
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識銜接起來使用。
重點難點
重點:幾組三角恒等式的應用
難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式
【精典范例】
例1 已知
求證:
例2 已知 求 的取值范圍
分析 難以直接用 的式子來表達,因此設 ,并找出 應滿足的等式,從而求出 的取值范圍.
例3 求函數(shù) 的值域.
例4 已知
且 、 、 均為鈍角,求角 的值.
分析 僅由 ,不能確定角 的值,還必須找出角 的范圍,才能判斷 的值. 由單位圓中的余弦線可以看出,若 使 的角為 或 若 則 或
【選修延伸】
例5 已知
求 的值.
例6 已知 ,
求 的值.
例7 已知
求 的值.
例8 求值:(1) (2)
【追蹤訓練】
1. 等于 ( )
A. B. C. D.
2.已知 ,且
,則 的值等于 ( )
A. B. C. D.
3.求值: = .
4.求證:(1)
高二數(shù)學教案學生(精選篇7)
教學目標:
①掌握對數(shù)函數(shù)的性質。
②應用對數(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復合函數(shù)的定義域、值 域及單調性。
③ 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高解題能力。
教學重點與難點:對數(shù)函數(shù)的性質的應用。
教學過程設計:
⒈復習提問:對數(shù)函數(shù)的概念及性質。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調性取決于底的大小:當0
調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞
增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9
Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:①構造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關系來比大小。
2 函數(shù)的定義域, 值 域及單調性。
例 2 ⑴求函數(shù)y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,
再根據(jù)對數(shù)函數(shù)的單調性求解。
師:請你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解為:1
例 3 求下列函數(shù)的值域和單調區(qū)間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調區(qū)間要用及復合函數(shù)的思想方法。
下面請同學們來解⑴。
生:此函數(shù)可看作是由y= log0.5u, u= x- x2復合而成。
板書:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函數(shù)y=log0.5(x- x2)的單調遞減區(qū)間(0,0.5],單調遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的性質時,都應該首先保證這個函數(shù)有意義,否則
函數(shù)都不存在,性質就無從談起。
師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什
么區(qū)別?
生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
⒊小結
這堂課主要講解如何應用對數(shù)函數(shù)的性質解決一些問題,希望能
通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。
⒋作業(yè)
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))
⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)
①求它的單調區(qū)間;②當0
⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;②討論它的奇偶性; ③討論它的單調性。
⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),
①求它的定義域;②當x為何值時,函數(shù)值大于1;③討論它的
單調性。
5.課堂教學設計說明
這節(jié)課是安排為習題課,主要利用對數(shù)函數(shù)的性質解決一些問題,整個一堂課分兩個部分:一 .比較數(shù)的大小,想通過這一部分的練習,
培養(yǎng)同學們構造函數(shù)的思想和分類討論、數(shù)形結合的思想。二.函數(shù)的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數(shù)的定義域。因為學生在求函數(shù)的值域和單調區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。