2021人教版八年級數學下冊教案
數學是日常生活和進一步學習必不可少的基礎和工具。掌握一定的數學基礎知識和基本技能,是每一個人應當具備的文化素養之一。今天小編在這給大家整理了一些2021人教版八年級數學下冊教案,我們一起來看看吧!
2021人教版八年級數學下冊教案1
一.教學目標:
1.探索等腰三角形判定定理.
2.理解等腰三角形的判定定理,并會運用其進行簡單的證明.
3.了解反證法的基本證明思路,并能簡單應用。
4.培養學生的逆向思維能力。
二. 教學過程分析
第一環節:復習引入
活動過程:通過問題串回顧等腰三角形的性質定理以及證明的思路,要求學生獨立思考后再進交流。
問題1.等腰三角形性質定理的內容是什么?這個命題的題設和結論分別是什么?
問題2.我們是如何證明上述定理的?
問題3.我們把性質定理的條件和結論反過來還成立么?如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等?
第二環節:逆向思考,定理證明
教師:上面,我們改變問題條件,得出了很多類似的結論,這是研究問題的一種常用方法,除此之外,我們還可以“反過來”思考問題,這也是獲得數學結論的一條途徑.例如“等邊對等角”,反過來成立嗎?在△ABC中,∠B=∠C,要想證明AB=AC,只要構造兩個全等的三角形,使AB與AC成為對應邊就可以了.你是怎樣構造的?
第三環節:鞏固練習
例2已知:如圖,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.
求證:AB=AC.
證明:
第四環節:適時提問 導出反證法
我們類比歸納獲得一個數學結論,“反過來”思考問題也獲得了一個數學結論.如果否定命題的條件,是否也可獲得一個數學結論嗎?我們一起來“想一想”:
小明說,在一個三角形中,如果兩個角不相等,那么這兩個角所對的邊也不相等.你認為這個結論成立嗎?如果成立,你能證明它嗎?
我們來看一位同學的想法:
如圖,在△ABC中,已知∠B≠∠C,此時AB與Ac要么相等,要么不相等.
假設AB=AC,那么根據“等邊對等角”定理可得∠C=∠B,但已知條件是∠B≠∠C.“∠C=∠B”與已知條件“∠B≠∠C”相矛盾,因此AB≠AC
你能理解他的推理過程嗎?
再例如,我們要證明△ABC中不可能有兩個直角,也可以采用這位同學的證法,假設有兩個角是直角,不妨設∠A=90°,∠B=90°,可得∠A+∠B=180°,但△AB∠A+∠B+∠C=180°, “∠A+∠B=180°”與“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不可能有兩個直角.
引導學生思考:上一道面的證法有什么共同的特點呢?引出反證法。
都是先假設命題的結論不成立,然后由此推導出了與已知或公理或已證明過的定理相矛盾,從而證明命題的結論一定成立.這也是證明命題的一種方法,我們把它叫做反證法.
第五環節:拓展延伸
現有等腰三角形紙片,如果能從一個角的頂點出發,將原紙片一次剪開成兩塊等腰三角形紙片,問此時的等腰三角形的頂角的度數?
第六環節:課堂小結
課外作業
教學反思:
2021人教版八年級數學下冊教案2
一、教學目的
1、認識中位數和眾數,并會求出一組數據中的眾數和中位數。
2、理解中位數和眾數的意義和作用。它們也是數據代表,可以反映一定的數據信息,幫助人們在實際問題中分析并做出決策。
3、會利用中位數、眾數分析數據信息做出決策。
二、重點、難點和難點的突破方法:
1、重點:認識中位數、眾數這兩種數據代表
2、難點:利用中位數、眾數分析數據信息做出決策。
三、例習題的意圖分析
1、教材P143的例4的意圖
(1)這個問題的研究對象是一個樣本,主要是反映了統計學中常用到一種解決問題的方法:對于數據較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結論去估計總體的情況。
(2)這個例題另一個意圖是交待了當數據個數為偶數時,中位數的求法和解題步驟。(因為在前面有介紹中位數求法,這里不再重述)
(3)問題2顯然反映學習中位數的意義:它可以估計一個數據占總體的相對位置,說明中位數是統計學中的一個重要的數據代表。
(4)這個例題再一次體現了統計學知識與實際生活是緊密聯系的,所以應鼓勵學生學好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數,它代表該型號的產品銷售最好,以便給商家合理的建議。
(2)、例5也交待了眾數的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數是數據代表的一種。
四、課堂引入
嚴格的講教材本節課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。
五、例習題的分析
教材P144例4,從所給的數據可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數據重新排列,通過觀察會發現共有12個數據,偶數個可以取中間的兩個數據146、148,求其平均值,便可得這組數據的中位數。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數最大,因此這組數據的眾數可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。
2021人教版八年級數學下冊教案3
一、教學目標
1.使學生了解判定定理1及直角三角形相似定理的證明方法并會應用,掌握例2的結論.
2.繼續滲透和培養學生對類比數學思想的認識和理解.
3.通過了解定理的證明方法,培養和提高學生利用已學知識證明新命題的能力.
4.通過學習,了解由特殊到一般的唯物辯證法的觀點.
二、教學設計
類比學習,探討發現
三、重點及難點
1.教學重點:是判定定理l及直角三角形相似定理的應用,以及例2的結論.
2.教學難點 :是了解判定定理1的證題方法與思路.
四、課時安排
1課時
五、教具學具準備
多媒體、常用畫圖工具、
六、教學步驟
[復習提問]
1.什么叫相似三角形?什么叫相似比?
2.敘述預備定理.由預備定理的題所構成的三角形是哪兩種情況.
[講解新課]
我們知道,用相似三角形的定義可以判定兩個三角形相似,但涉及的條件較多,需要有
三對對應角相等,三條對應邊的比也都相等,顯然用起來很不方便.那么從本節課開始我們
來研究能不能用較少的幾個條件就能判定三角形相似呢?
上節課講的預備定理實際上就是一個判定三角形相似的方法,現在再來學習幾種方法.
我們已經知道,全等三角形是相似三角形當相似比為1時的特殊情況,判定兩個三角形
全等的三個公理和判定兩個三角形相似的三個定理之間有內在的聯系,不同處僅在于前者是后者相似比等于1的情況,教學時可先指出全等三角形與相似三角形之間的關系,然后引導學生自己用類比的方法找出新的命題,如:
問:判定兩個三角形全等的方法有哪幾種?
答:SAS、ASA(AAS)、SSS、HL.
問:全等三角形判定中的“對應角相等”及“對應邊相等”的語句,用到中應如何說?
答:“對應角相等”不變,“對應邊相等”說成“對應邊成比例”.
問:我們知道,一條邊是寫不出比的,那么你能否由“ASA”或“AAS”,采用類比的方法,引出一個關于三角形相似判定的新的命題呢?
答:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似.
強調:(1)學生在回答中,如出現問題,教師要予以啟發、引導、糾正.
(2)用類比方法找出的新命題一定要加以證明.
如圖5-53,在△ABC和△ 中, , .
問:△ABC和△ 是否相似?
分析:可采用問答式以啟發學生了解證明方法.
問:我們現在已經學習了哪幾個判定三角形相似的方法?
答:①三角形的定義,②上一節學習的預備定理.
問:根據本命題條件,探討時應采用哪種方法?為什么?
答:預備定理,因為用定義條件明顯不夠.
問:采用預備定理,必須構造出怎樣的圖形?
答: 或 .
問:應如何添加輔助線,才能構造出上一問的圖形?
此問學生回答如有困難,教師可領學生共同探討,注意告訴學生作輔助線一定要合理.
(1)在△ABC邊AB(或延長線)上,截取 ,過D作DE∥BC交AC于E.
“作相似.證全等”.
(2)在△ABC邊AB(或延長線上)上,截取 ,在邊AC(或延長線上)截取AE= ,連結DE,“作全等,證相似”.
(教師向學生解釋清楚“或延長線”的情況)
雖然定理的證明不作要求,但通過剛才的分析讓學生了解定理的證明思路與方法,這樣有利于培養和提高學生利用已學知識證明新命題的能力.
判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似.
簡單說成:兩角對應相等,兩三角形相似.
例1 已知 和 中 , , , .
求證: ∽ .
此例題是判定定理的直拉應用,應使學生熟練掌握.
例2 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似.
已知:如圖5-54,在 中,CD是斜邊上的高.
求證: ∽ ∽ .
該例題很重要,它一方面可以起到鞏固、掌握判定定理1的作用;另一方面它的應用很廣泛,并且可以直接用它判定直角三角形相似,教材上排了黑體字,所以可以當作定理直接使用.
即 ∽△∽△.
[小結]
1判定定理1的引出及證明思路與方法的分析,要求學生掌握兩種輔助線作法的思路.
2.判定定理1的應用以及記住例2的結論并會應用.
七、布置作業
2021人教版八年級數學下冊教案4
●教學目標
(一)教學知識點
1.了解兩個條件確定一個一次函數;一個條件確定一個正比例函數.
2.能由兩個條件求出一次函數的表達式,一個條件求出正比例函數的表達式,并解決有關現實問題.
(二)能力訓練要求
能根據函數的圖象確定一次函數的表達式,培養學生的數形結合能力.
(三)情感與價值觀要求
能把實際問題抽象為數字問題,也能把所學知識運用于實際,讓學生認識數字與人類生活的密切聯系及對人類歷史發展的作用.
●教學重點
根據所給信息確定一次函數的表達式.
●教學難點
用一次函數的知識解決有關現實問題.
●教學方法
啟發引導法.
●教具準備
小黑板、三角板
●教學過程
Ⅰ.導入 新課
[師]在上節課中我們學習了一次函數圖象的定義,在給定表達式的前提下,我們可以說出它的有關性質.如果給你有關信息,你能否求出函數的表達式呢?這將是本節課我們要研究的問題.
Ⅱ.講授新課
一、試一試(閱讀課文P167頁)想想下面的問題。
某物體沿一個斜坡下滑,它的速度v(米/秒)與其下滑時間t(秒 )的關系。
(1)寫出v與t之間的關系式;
(2)下滑3秒時物體的速度是多少?
分析:要求v與t之間的關系式,首先應觀察圖象,確定它是正比例函數的圖象,還是一次函數的圖象,然后設函數解析式,再把已知的坐標代入解析
式求出待定系數即可.
[師]請大家先思考解題的思路,然后和同伴進行交流.
[生]因為函數圖象過原點,且是一條直線,所以這是一個正比例函數的圖象,設表達式為v=kt,由圖象可知(2,5)在直線上,所以把t=2,v=5代入上式求出k,就可知v與t的關系式了.
解:由題意可知v是t的正比例函數.
設v=kt
∵(2,5)在函數圖象上
∴2k=5
∴k=
∴v與t的關系式為
v= t
(2)求下滑3秒時物體的速度,就是求當t等于3時的v的值.
解:當t=3時
v= ×3= =7.5(米/秒)
二、想一想
[師]請大家從這個題的解題經歷中,總結一下如果已知函數的圖象,怎樣求函數的表達式.大家互相討論之后再表述出來.
[生]第一步應根據函數的圖象,確定這個函數是正比例函數或是一次函數;
第二步設函數的表達式;
第三步根據表達式列等式,若是正比例函數,則找一個點的坐標即可;若是一次函數,則需要找兩個點的坐標,把這些點的坐標分別代入所設的解析式中,組成關于k,b的一個或兩個方程.
第四步解出k,b值.
第五步把k,b的值代回到表達式中即可.
[師]由此可知,確定正比例函數的表達式需要幾個條件?確定一次函數的表達式呢?
[生]確定正比例函數的表達式需要一個條件,確定一次函數的表達式需要兩個條件.
三、閱讀課文P167頁例一,嘗試分析解答下面例題。
[例]在彈性限度內,彈簧的長度y(厘米)是所掛物體的質量x(千克)的
一次函數、當所掛物體的質量為1千克時,彈簧長15厘米;當所掛物體的質量為3千克時,彈簧長16厘米.寫出y與x之間的關系式,并求出所掛物體的質量為4千克時彈簧的長度.
[師]請大家先分析一下,這個例題和我們上面討論的問題有何區別.
[生]沒有畫圖象.
[師]在沒有圖象的情況下,怎樣確定是正比例函數還是一次函數呢?
[生]因為題中已告訴是一次函數.
[師]對.這位同學非常仔細,大家應該向這位同學學習,對所給題目首先要認真審題,然后再有目標地去解決,下面請大家仿照上面的解題步驟來完成本題.
[生]解:設y=kx+b,根據題意,得
15=k+b, ①
16=3k+b. ②
由①得b=15-k
由②得b=16-3k
∴15-k=16-3k
即k=0.5
把k=0.5代入①,得k=14.5
所以在彈性限度內.
y=0.5x+14.5
當x=4時
y=0.5×4+14.5=16.5(厘米)
即物體的質量為4千克時,彈簧長度為16.5厘米.
[師]大家思考一下,在上面的兩個題中,有哪些步驟是相同的,你能否總結出求函數表達式的步驟.
[生]它們的相同步驟是第二步到第四步.
求函數表達式的步驟有:
1.設函數表達式.
2.根據已知條件列出有關方程.
3.解方程.
4.把求出的k,b值代回到表達式中即可.
四.課堂練習
(一)隨堂練習P168頁
(題目見教材)
解:若一次函數y=2x+b的圖象經過點A(-1,1),則b=3,該圖象經過點B(1,-5)和點 C (- ,0)
(題目見教材)
解:分析直線l是一次函數y=kx+b的圖象.由圖象過(0,2),(3,0)兩點可知:當x=0時,y=2;當x=3時,y=0。分別代入y=kx+b中列出兩個方程,解法如上面例題。
五.課時小結
本節課我們主要學習了根據已知條件,如何求函數的表達式.
其步驟如下:
1.設函數表達式;
2.根據已知條件列出有關k,b的方程;
3.解方程,求k,b;
4.把k,b代回表達式中,寫出表達式.
六、布置作業 :P169頁1、2