小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 >

2023高考數學教案

時間: 新華 教案模板

2023高考數學教案篇1

一、教學目標

【知識與技能】

掌握三角函數的單調性以及三角函數值的取值范圍。

【過程與方法】

經歷三角函數的單調性的探索過程,提升邏輯推理能力。

【情感態度價值觀】

在猜想計算的過程中,提高學習數學的興趣。

二、教學重難點

【教學重點】

三角函數的單調性以及三角函數值的取值范圍。

【教學難點】

探究三角函數的單調性以及三角函數值的取值范圍過程。

三、教學過程

(一)引入新課

提出問題:如何研究三角函數的單調性

(二)小結作業

提問:今天學習了什么?

引導學生回顧:基本不等式以及推導證明過程。

課后作業:

思考如何用三角函數單調性比較三角函數值的大小。

2023高考數學教案篇2

一.教學目標

1.知識技能:了解冪函數定義,掌握一些常見冪函數的圖像及性質和一般冪函數第一象限內圖像特點

2.過程與方法:通過形式來定義冪函數,比較冪函數和指數函數得出其特有的形式特點,觀察圖像歸納總結出其函數性質,數形結合找規律

3.情感、態度和價值觀:函數圖像直接反應函數性質,同樣由函數性質也能大致畫出其圖像,對圖像與性質之間的關系進行探索體會

二.重難點

重點:冪函數的定義,常見冪函數的圖像和性質,一般冪函數第一象限的大致圖像再利用其性質得到整體圖像

難點:其一般的性質分析,再由性質得到一般圖像

三.教學方法和用具

方法:歸納總結,數形結合,分析驗證

用具:幻燈片,幾何畫板,黑板

四.教學過程

(幻燈片見附件)

1.設置問題情境,找出所得函數的共同形式,由形式給出冪函數的定義(幻燈片1?幻燈片2)(板書)

2.從形式上比較指數函數和冪函數的異同(幻燈片3)

3.利用定義的形式,判斷所給函數是否是冪函數,并得出判斷依據(幻燈片4)

4.畫常見的三種冪函數的圖像,再讓學生用描點法畫另兩種,并用幾何畫板驗證(幻燈片5)(幾何畫板)

5.用幾何畫板畫出這五個冪函數的圖像,觀察圖像完成書中冪函數的函數性質的表格,并分析得出更一般的結論(板書)(幾何畫板)

2023高考數學教案篇3

教學目標:

(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題。

(2)進一步理解曲線的方程和方程的曲線。

(3)初步掌握求曲線方程的方法。

(4)通過本節內容的教學,培養學生分析問題和轉化的能力。

教學重點、難點:

求曲線的方程。

教學用具:

計算機。

教學方法:

啟發引導法,討論法。

教學過程:

【引入】

1、提問:什么是曲線的方程和方程的曲線。

學生思考并回答。教師強調。

2、坐標法和解析幾何的意義、基本問題。

對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何。解析幾何的兩大基本問題就是:

(1)根據已知條件,求出表示平面曲線的方程。

(2)通過方程,研究平面曲線的性質。

事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節課就初步研究曲線方程的求法。

【問題】

如何根據已知條件,求出曲線的方程。

【實例分析】

例1:設、兩點的坐標是、(3,7),求線段的垂直平分線的方程。

首先由學生分析:根據直線方程的知識,運用點斜式即可解決。

解法一:易求線段的中點坐標為(1,3),

由斜率關系可求得l的斜率為

于是有

即l的方程為

分析、引導:上述問題是我們早就學過的,用點斜式就可解決。可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據是什么,有證明嗎?

(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據就是定義中的兩條)。

證明:(1)曲線上的點的坐標都是這個方程的解。

設是線段的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點的坐標是方程的解。

(2)以這個方程的解為坐標的點都是曲線上的點。

設點的坐標是方程①的任意一解,則

到、的距離分別為

所以,即點在直線上。

綜合(1)、(2),①是所求直線的方程。

至此,證明完畢。回顧上述內容我們會發現一個有趣的現象:在證明(1)曲線上的點的坐標都是這個方程的解中,設是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標,這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設是線段的垂直平分線上任意一點,也就是點屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當然也不要忘了證明,即驗證兩條是否都滿足。顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優越一些);至于第二條上邊已證。

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現了曲線方程定義中點集與對應的思想。因此是個好方法。

讓我們用這個方法試解如下問題:

例2:點與兩條互相垂直的直線的距離的積是常數求點的軌跡方程。

分析:這是一個純粹的幾何問題,連坐標系都沒有。所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系。然后仿照例1中的解法進行求解。

求解過程略。

【概括總結】通過學生討論,師生共同總結:

分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:

首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正。說得更準確一點就是:

(1)建立適當的坐標系,用有序實數對例如表示曲線上任意一點的坐標;

(2)寫出適合條件的點的集合

;

(3)用坐標表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標的點都是曲線上的點。

一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點。所以,通常情況下證明可省略,不過特殊情況要說明。

上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正。

下面再看一個問題:

例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程。

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系。

解:設點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合

由距離公式,點適合的條件可表示為

將①式移項后再兩邊平方,得化簡得

由題意,曲線在軸的上方,所以,雖然原點的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為,它是關于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示。

【練習鞏固】

題目:在正三角形內有一動點,已知到三個頂點的距離分別為、、,且有,求點軌跡方程。

分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示。設、的坐標為、,則的坐標為,的坐標為。

根據條件,代入坐標可得

化簡得

由于題目中要求點在三角形內,所以,在結合①式可進一步求出、的范圍,最后曲線方程可表示為

【小結】師生共同總結:

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進行評價。各步驟的作用,哪步重要,哪步應注意什么?

【作業】課本第72頁練習1,2,3;

2023高考數學教案篇4

一、教學目標

1、知識與技能

(1)理解對數的概念,了解對數與指數的關系;

(2)能夠進行指數式與對數式的互化;

(3)理解對數的性質,掌握以上知識并培養類比、分析、歸納能力;

2、過程與方法

3、情感態度與價值觀

(1)通過本節的學習體驗數學的嚴謹性,培養細心觀察、認真分析

分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神;

(2)感知從具體到抽象、從特殊到一般、從感性到理性認知過程;

(3)體驗數學的科學功能、符號功能和工具功能,培養直覺觀察、

探索發現、科學論證的良好的數學思維品質、

二、教學重點、難點

教學重點

(1)對數的定義;

(2)指數式與對數式的互化;

教學難點

(1)對數概念的理解;

(2)對數性質的理解;

三、教學過程:

四、歸納總結:

1、對數的概念

一般地,如果函數ax=n(a0且a≠1)那么數x叫做以a為底n的對數,記作x=logan,其中a叫做對數的底數,n叫做真數。

2、對數與指數的互化

ab=n?logan=b

3、對數的基本性質

負數和零沒有對數;loga1=0;logaa=1對數恒等式:alogan=n;logaa=nn

五、課后作業

課后練習1、2、3、4

2023高考數學教案篇5

【課題名稱】

《等差數列》的導入

【授課年級】

高中二年級

【教學重點】

理解等差數列的概念,能夠運用等差數列的定義判斷一個數列是否為等差數列。

【教學難點】

等差數列的性質、等差數列“等差”特點的理解,

【教具準備】多媒體課件、投影儀

【三維目標】

㈠知識目標:

了解公差的概念,明確一個等差數列的限定條件,能根據定義判斷一個等差數列是否是一個等差數列;

㈡能力目標:

通過尋找等差數列的共同特征,培養學生的觀察力以及歸納推理的能力;

㈢情感目標:

通過對等差數列概念的歸納概括,培養學生的觀察、分析資料的能力。

【教學過程】

導入新課

師:上兩節課我們已經學習了數列的定義以及給出表示數列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的角度反映了數列的特點。下面我們觀察以下的幾個數列的例子:

(1)我們經常這樣數數,從0開始,每個5個數可以得到數列:0,5,10,15,20,()

(2)2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目工設置了7個級別,其中較輕的4個級別體重組成的數列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?

(3)為了保證優質魚類有良好的生活環境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數列:18,15.5,13,10.5,8,(),則第六個數應為多少?

(4)10072,10144,10216,(),10360

請同學們回答以上的四個問題

生:第一個數列的第6項為25,第二個數列的第5個數為68,第三個數列的第6個數為5.5,第四個數列的第4個數為10288。

師:我來問一下,你是依據什么得到了這幾個數的呢?請以第二個數列為例說明一下。

生:第二個數列的后一項總比前一項多5,依據這個規律我就得到了這個數列的第5個數為68.

師:說的很好!同學們再仔細地觀察一下以上的四個數列,看看以上的四個數列是否有什么共同特征?請注意,是共同特征。

生1:相鄰的兩項的差都等于同一個常數。

師:很好!那作差是否有順序?是否可以顛倒?

生2:作差的順序是后項減去前項,不能顛倒!

師:正如生1的總結,這四個數列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個常數(即等差)。我們叫這樣的數列為等差數列。這就是我們這節課要研究的內容。

推進新課

等差數列的定義:一般地,如果一個數列從第2項起,每一項與它的前一項的差都等于同一個常數,那么這個數列就叫做等差數列,這個常數就叫做等差數列的公差,公差常用字母d表示。從剛才的分析,同學們應該注意公差d一定是由后項減前項。

師:有哪個同學知道定義中的關鍵字是什么?

生2:“從第二項起”和“同一個常數”

2023高考數學教案篇6

一、教學目標

1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。

2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

3、通過對四種命題之間關系的學習,培養學生邏輯推理能力

4、初步培養學生反證法的數學思維。

二、教學分析

重點:四種命題;難點:四種命題的關系

1、本小節首先從初中數學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。

2、教學時,要注意控制教學要求。本小節的內容,只涉及比較簡單的命題,不研究含有邏輯聯結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。

三、教學手段和方法(演示教學法和循序漸進導入法)

1、以故事形式入題

2、多媒體演示

四、教學過程

(一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數學思想嗎?通過這節課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!

設計意圖:創設情景,激發學生學習興趣

(二)復習提問:

1.命題“同位角相等,兩直線平行”的條件與結論各是什么?

2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

學生活動:

口答:

(1)若同位角相等,則兩直線平行;

(2)若一個四邊形是正方形,則它的四條邊相等.

設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.

(三)新課講解:

1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。

2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。

3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。

(四)組織討論:

讓學生歸納什么是否命題,什么是逆否命題。

例1及例2

(五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學生活動:

討論后回答

這兩個逆否命題都真.

原命題真,逆否命題也真

引導學生討論原命題的真假與其他三種命題的真

假有什么關系?舉例加以說明,同學們踴躍發言。

(六)課堂小結:

1、一般地,用p和q分別表示原命題的條件和結論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:

原命題若p則q;

逆命題若q則p;(交換原命題的條件和結論)

否命題,若¬p則¬q;(同時否定原命題的條件和結論)

逆否命題若¬q則¬p。(交換原命題的條件和結論,并且同時否定)

2、四種命題的關系

(1).原命題為真,它的逆命題不一定為真.

(2).原命題為真,它的否命題不一定為真.

(3).原命題為真,它的逆否命題一定為真

(七)回扣引入

分析引入中的笑話,先討論,后總結:現在我們來分析一下主人說的四句話:

第一句:“該來的沒來”

其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。

第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。

第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。

同學們,生活中處處是數學,期待我們善于發現的眼睛

五、作業

1.設原命題是“若

斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判

2.設原命題是“當時,若,則”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

2023高考數學教案篇7

一、教學內容分析:

本節教材選自人教a版數學必修②第二章第一節課,本節內容在立幾學習中起著承上啟下的作用,具有重要的意義與地位。本節課是在前面已學空間點、線、面位置關系的基礎作為學習的出發點,結合有關的實物模型,通過直觀感知、操作確認(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節課的學習對培養學生空間感與邏輯推理能力起到重要作用,特別是對線線平行、面面平行的判定的學習作用重大。

二、學生學習情況分析:

任教的學生在年段屬中上程度,學生學習興趣較高,但學習立幾所具備的語言表達及空間感與空間想象能力相對不足,學習方面有一定困難。

三、設計思想

本節課的設計遵循從具體到抽象的原則,適當運用多媒體輔助教學手段,借助實物模型,通過直觀感知,操作確認,合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機結合,讓學生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數學的概念,領會數學的思想方法,養成積極主動、勇于探索、自主學習的學習方式,發展學生的空間觀念和空間想象力,提高學生的數學邏輯思維能力。

四、教學目標

通過直觀感知——觀察——操作確認的認識方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準確使用數學符號語言、文字語言表述判定定理。培養學生觀察、探究、發現的能力和空間想象能力、邏輯思維能力。讓學生在觀察、探究、發現中學習,在自主合作、交流中學習,體驗學習的樂趣,增強自信心,樹立積極的學習態度,提高學習的自我效能感。

五、教學重點與難點

重點是判定定理的引入與理解,難點是判定定理的應用及立幾空間感、空間觀念的形成與邏輯思維能力的培養。

六、教學過程設計

(一)知識準備、新課引入

提問1:根據公共點的情況,空間中直線a和平面?有哪幾種位置關系?并完成下表:(多媒體幻燈片演示)a??

提問2:根據直線與平面平行的定義(沒有公共點)來判定直線與平面平行你認為方便嗎?談談你的看法,并指出是否有別的判定途徑。

[設計意圖:通過提問,學生復習并歸納空間直線與平面位置關系引入本節課題,并為探尋直線與平面平行判定定理作好準備。]

(二)判定定理的探求過程

1、直觀感知

提問:根據同學們日常生活的觀察,你們能感知到并舉出直線與平面平行的具體事例嗎?

生1:例舉日光燈與天花板,樹立的電線桿與墻面。

生2:門轉動到離開門框的任何位置時,門的邊緣線始終與門框所在的平面平行(由學生到教室門前作演示),然后教師用多媒體動畫演示。

2、動手實踐

教師取出預先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉動,觀察另一邊與桌面的位置給人以平行的感覺,而當把直角腰放在桌面上并轉動,觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準備的木條放在講臺桌上作上述情形的演示)。

3、探究思考

(1)上述演示的直線與平面位置關系為何有如此的不同?關鍵是什么因素起了作用呢?通過觀察感知發現直線與平面平行,關鍵是三個要素:

①平面外一條線

②我們把直線與平面相交或平行的位置關系統稱為直線在平面外,用符號表示為平面內一條直線

③這兩條直線平行

(2)如果平面外的直線a與平面?內的一條直線b平行,那么直線a與平面?平行嗎?

4、歸納確認:(多媒體幻燈片演示)

直線和平面平行的判定定理:平面外的一條直線與平面內的一條直線平行,則該直線和這個平面平行。

(三)定理運用,問題探究(多媒體幻燈片演示)

1、想一想:

(1)判斷下列命題的真假?說明理由:

①如果一條直線不在平面內,則這條直線就與平面平行()

②過直線外一點可以作無數個平面與這條直線平行()

③一直線上有二個點到平面的距離相等,則這條直線與平面平行()

(2)若直線a與平面?內無數條直線平行,則a與?的位置關系是()a、ab、a、c、a或a、d、a[學情預設:設計這組問題目的是強調定理中三個條件的重要性,同時預設(1)中的③學生可能認為正確的,這樣就無法達到老師的預設與生成的目的,這時教師要引導學生思考,讓學生想象的空間更廣闊些。此外教師可用預先準備好的羊毛針與泡沫板進行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學生空間想象力強,能按老師的要求生成正確的結果則就由個別學生進行演示。]

2、作一作:

設a、b是二異面直線,則過a、b外一點p且與a、b都平行的平面存在嗎?若存在請畫出平面,不存在說明理由?

先由學生討論交流,教師提問,然后教師總結,并用準備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動畫過程。

[設計意圖:這是一道動手操作的問題,不僅是為了拓展加深對定理的認識,更重要的是培養學生空間感與思維的嚴謹性。]

3、證一證:

例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點,求證:ef平面bcd。

變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點,連結ef、fg、gh、he、ac、bd請分別找出圖中滿足線面平行位置關系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點在線段ae上、q點在線段fc上,連結ph、qg,并繼續探究圖中所具有的線面平行位置關系?(在變式一的基礎上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。

[設計意圖:設計二個變式訓練,目的是通過問題探究、討論,思辨,及時鞏固定理,運用定理,培養學生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點,求證:ef平面bdd1b1分析:根據判定定理必須在平

面bdd1b1內找(作)一條線與ef平行,聯想到中點問題找中點解決的方法,可以取bd或b1d1中點而證之。

思路一:取bd中點g連d1g、eg,可證d1gef為平行四邊形。

思路二:取d1b1中點h連hb、hf,可證hfeb為平行四邊形。

[知識鏈接:根據空間問題平面化的思想,因此把找空間平行直線問題轉化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點。平行問題找中點解決是個好途徑好方法。這種思想方法是解決立幾論證平行問題,培養邏輯思維能力的重要思想方法]

4、練一練:

練習1:見課本6頁練習1、2

練習2:將兩個全等的正方形abcd和abef拼在一起,設m、n分別為ac、bf中點,求證:mn平面bce。

變式:若將練習2中m、n改為ac、bf分點且am=fn,試問結論仍成立嗎?試證之。

[設計意圖:設計這組練習,目的是為了鞏固與深化定理的運用,特別是通過練習2及其變式的訓練,讓學生能在復雜的圖形中去識圖,去尋找分析問題、解決問題的途徑與方法,以達到逐步培養空間感與邏輯思維能力。]

(四)總結

先由學生口頭總結,然后教師歸納總結(由多媒體幻燈片展示):

1、線面平行的判定定理:平面外的一條直線與平面內的一條直線平行,則該直線與這個平面平行。

2、定理的符號表示:ba?ab??簡述:(內外)線線平行則線面平行

3、定理運用的關鍵是找(作)面內的線與面外的線平行,途徑有:取中點利用平行四邊形或三角形中位線性質等。

七、教學反思

本節“直線與平面平行的判定”是學生學習空間位置關系的判定與性質的第一節課,也是學生開始學習立幾演澤推理論述的思維方式方法,因此本節課學習對發展學生的空間觀念和邏輯思維能力是非常重要的。

本節課的設計遵循“直觀感知——操作確認——思辯論證”的認識過程,注重引導學生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認識直線和平面平行的判定方法,讓學生通過自主探索、合作交流,進一步認識和掌握空間圖形的性質,積累數學活動的經驗,發展合情推理、發展空間觀念與推理能力。

本節課的設計注重訓練學生準確表達數學符號語言、文字語言及圖形語言,加強各種語言的互譯。比如上課開始時的復習引入,讓學生用三種語言的表達,動手實踐、定理探求過程以及定理描述也注重三種語言的表達,對例題的講解與分析也注意指導學生三種語言的表達。

本節課對定理的探求與認識過程的設計始終貫徹直觀在先,感知在先,學自己身邊的數學,感知生活中包涵的數學現象與數學原理,體驗數學即生活的道理,比如讓學生舉生活中能感知線面平行的例子,學生會舉出日光燈與天花板,電線桿與墻面,轉動的門等等,同時老師的舉例也很貼進生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學生從中抽象概括出定理。

2023高考數學教案篇8

教材分析:

三角函數的誘導公式是普通高中課程標準實驗教科書(人教B版)數學必修四,第一章第二節內容,其主要內容是公式(一)至公式(四)。本節課是第二課時,教學內容是公式(三)。教材要求通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法。

教案背景:

通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求。因此本節內容在三角函數中占有非常重要的地位.

教學方法:

以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式。

教學目標:

借助單位圓探究誘導公式。

能正確運用誘導公式將任意角的三角函數化為銳角三角函數。

教學重點:

誘導公式(三)的推導及應用。

教學難點:

誘導公式的應用。

教學手段:

多媒體。

教學情景設計:

一.復習回顧:

1.誘導公式(一)(二)。

2.角(終邊在一條直線上)

3.思考:下列一組角有什么特征?()能否用式子來表示?

二.新課:

已知由

可知

而(課件演示,學生發現)

所以

于是可得:(三)

設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。

由公式(一)(三)可以看出,角角相等。即:

.

公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數式的值或化簡三角函數式。

設計意圖:結合學過的公式(一)(二),發現特點,總結公式。

1.練習

(1)

設計意圖:利用公式解決問題,發現新問題,小組研究討論,得到新公式。

(學生板演,老師點評,用彩色粉筆強調重點,引導學生總結公式。)

三.例題

例3:求下列各三角函數值:

(1)

(2)

(3)

(4)

例4:化簡

設計意圖:利用公式解決問題。

練習:

(1)

(2)(學生板演,師生點評)

設計意圖:觀察公式特點,選擇公式解決問題。

四.課堂小結:將任意角三角函數轉化為銳角三角函數,體現轉化化歸,數形結合思想的應用,培養了學生分析問題、解決問題的能力,熟練應用解決問題。

五.課后作業:課后練習A、B組

六.課后反思與交流

很榮幸大家來聽我的課,通過這課,我學習到如下的東西:

1.要認真的研讀新課標,對教學的目標,重難點把握要到位

2.注意板書設計,注重細節的東西,語速需要改正

3.進一步的學習網頁制作,讓你的網頁更加的完善,學生更容易操作

4.盡可能讓你的學生自主提出問題,自主的思考,能夠化被動學習為主動學習,充分享受學習數學的樂趣

5.上課的生動化,形象化需要加強

聽課者評價:

1.評議者:網絡輔助教學,起到了很好的效果;教態大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數學時,最好值有個側重點;網絡設計上,網頁上公開的推導公式為上,留有更大的空間讓學生來思考。

2.評議者:網絡教學效果良好,給學生自主思考,學習的空間發揮,教學設計得好;建議:課堂講課聲音,語調可以更有節奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。

3.評議者:學科網絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經驗。

4.評議者:引導學生通過網絡進行探究。

建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。

(1)給學生思考的時間較長,語調相對平緩,總結時,給學生一些激勵的語言更好

(2)這樣子的教學可以提高上課效率,讓學生更多的時間思考

(3)網絡平臺的使用,使得學生的參與度明顯提高,存在問題:1.公式對稱性的誘導,點與點的對稱的誘導,終邊的關系的誘導,要進一步的修正;2.公式的概括要注意引導學生怎么用,學習這個誘導公式的作用

(4)給學生答案,這個網頁要進一步的修正,答案能否不要一點就出來

(5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少

(6)讓學生多探究,課堂會更熱鬧

(7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習

(8)教學模式相對簡單重復

(9)思路較為清晰,規范化的推理

60928 主站蜘蛛池模板: 福州仿石漆加盟_福建仿石漆厂家-外墙仿石漆加盟推荐铁壁金钢(福建)新材料科技有限公司有保障 | 高铝矾土熟料_细粉_骨料_消失模_铸造用铝矾土_铝酸钙粉—嵩峰厂家 | 100_150_200_250_300_350_400公斤压力空气压缩机-舰艇航天配套厂家 | 首页_欧瑞传动官方网站--主营变频器、伺服系统、新能源、软起动器、PLC、HMI | 工业机械三维动画制作 环保设备原理三维演示动画 自动化装配产线三维动画制作公司-南京燃动数字 聚合氯化铝_喷雾聚氯化铝_聚合氯化铝铁厂家_郑州亿升化工有限公司 | 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 - 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 | 包装机_厂家_价格-山东包装机有限公司 | 北京银联移动POS机办理_收银POS机_智能pos机_刷卡机_收银系统_个人POS机-谷骐科技【官网】 | 电机修理_二手电机专家-河北豫通机电设备有限公司(原石家庄冀华高压电机维修中心) | 石家庄小程序开发_小程序开发公司_APP开发_网站制作-石家庄乘航网络科技有限公司 | 仓储笼_金属箱租赁_循环包装_铁网箱_蝴蝶笼租赁_酷龙仓储笼租赁 测试治具|过炉治具|过锡炉治具|工装夹具|测试夹具|允睿自动化设备 | 挤出熔体泵_高温熔体泵_熔体出料泵_郑州海科熔体泵有限公司 | 美的商用净水器_美的直饮机_一级代理经销商_Midea租赁价格-厂家反渗透滤芯-直饮水批发品牌售后 | 云南标线|昆明划线|道路标线|交通标线-就选云南云路施工公司-云南云路科技有限公司 | 压力变送器-上海武锐自动化设备有限公司 | 北京森语科技有限公司-模型制作专家-展览展示-沙盘模型设计制作-多媒体模型软硬件开发-三维地理信息交互沙盘 | 上海电子秤厂家,电子秤厂家价格,上海吊秤厂家,吊秤供应价格-上海佳宜电子科技有限公司 | 宝元数控系统|对刀仪厂家|东莞机器人控制系统|东莞安川伺服-【鑫天驰智能科技】 | 烽火安全网_加密软件、神盾软件官网 | 泰来华顿液氮罐,美国MVE液氮罐,自增压液氮罐,定制液氮生物容器,进口杜瓦瓶-上海京灿精密机械有限公司 | 压力变送器-上海武锐自动化设备有限公司 | 搪玻璃冷凝器_厂家-越宏化工设备| LED投光灯-工矿灯-led路灯头-工业灯具 - 山东普瑞斯照明科技有限公司 | 铝扣板-铝方通-铝格栅-铝条扣板-铝单板幕墙-佳得利吊顶天花厂家 elisa试剂盒价格-酶联免疫试剂盒-猪elisa试剂盒-上海恒远生物科技有限公司 | 合肥通道闸-安徽车牌识别-人脸识别系统厂家-安徽熵控智能技术有限公司 | 纯水设备_苏州皙全超纯水设备水处理设备生产厂家 | 哈尔滨发电机,黑龙江柴油发电机组-北方星光 | 打孔器,打孔钳厂家【温州新星德牌五金工具】 | 烘箱-工业烘箱-工业电炉-实验室干燥箱 - 苏州华洁烘箱制造有限公司 | 安徽免检低氮锅炉_合肥燃油锅炉_安徽蒸汽发生器_合肥燃气锅炉-合肥扬诺锅炉有限公司 | 流水线电子称-钰恒-上下限报警电子秤-上海宿衡实业有限公司 | 等离子空气净化器_医用空气消毒机_空气净化消毒机_中央家用新风系统厂家_利安达官网 | 土壤墒情监测站_土壤墒情监测仪_土壤墒情监测系统_管式土壤墒情站-山东风途物联网 | 电缆接头-防爆电缆接头-格兰头-金属电缆接头-防爆填料函 | 技德应用| 深圳宣传片制作_产品视频制作_深圳3D动画制作公司_深圳短视频拍摄-深圳市西典映画传媒有限公司 | 首页-恒温恒湿试验箱_恒温恒湿箱_高低温试验箱_高低温交变湿热试验箱_苏州正合 | 出国劳务公司_正规派遣公司[严海] | 微波消解仪器_智能微波消解仪报价_高压微波消解仪厂家_那艾 | 视频教程导航网_视频教程之家_视频教程大全_最新视频教程分享发布平台 | 蜜蜂职场文库_职场求职面试实用的范文资料大全 |