高中數學教案反思怎么寫
高中數學教案反思怎么寫篇1
一、教學內容分析
二面角是我們日常生活中經常見到的一個圖形,它是在學生學過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進一步完善了空間角的概念。掌握好本節課的知識,對學生系統地理解直線和平面的知識、空間想象能力的培養,乃至創新能力的培養都具有十分重要的意義。
二、教學目標設計
理解二面角及其平面角的概念;能確認圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關問題。
三、教學重點及難點
二面角的平面角的概念的形成以及二面角的平面角的作法。
四、教學流程設計
五、教學過程設計
一、新課引入
1。復習和回顧平面角的有關知識。
平面中的角
定義從一個頂點出發的兩條射線所組成的圖形,叫做角
圖形
結構射線點射線
表示法AOB,O等
2。復習和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征。(空間角轉化為平面角)
3。觀察:陡峭與否,跟山坡面與水平面所成的角大小有關,而山坡面與水平面所成的角就是兩個平面所成的角。在實際生活當中,能夠轉化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關。)從而,引出二面角的定義及相關內容。
二、學習新課
(一)二面角的定義
平面中的角二面角
定義從一個頂點出發的兩條射線所組成的圖形,叫做角課本P17
圖形
結構射線點射線半平面直線半平面
表示法AOB,O等二面角a或—AB—
(二)二面角的圖示
1。畫出直立式、平臥式二面角各一個,并分別給予表示。
2。在正方體中認識二面角。
(三)二面角的平面角
平面幾何中的角可以看作是一條射線繞其端點旋轉而成,它有一個旋轉量,它的大小可以度量,類似地,二面角也可以看作是一個半平面以其棱為軸旋轉而成,它也有一個旋轉量,那么,二面角的大小應該怎樣度量?
1。二面角的平面角的定義(課本P17)。
2。AOB的大小與點O在棱上的位置無關。
[說明]①平面與平面的位置關系,只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,有必要來研究二面角的度量問題。
②與兩條異面直線所成的角、直線和平面所成的角做類比,用平面角去度量。
③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內;角的兩邊分別與棱垂直。
3。二面角的平面角的范圍:
(四)例題分析
例1一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個的二面角,求此時B、C兩點間的距離。
[說明]①檢查學生對二面角的平面角的定義的掌握情況。
②翻折前后應注意哪些量的位置和數量發生了變化,哪些沒變?
例2如圖,已知邊長為a的等邊三角形所在平面外有一點P,使PA=PB=PC=a,求二面角的大小。
[說明]①求二面角的步驟:作證算答。
②引導學生掌握解題可操作性的通法(定義法和線面垂直法)。
例3已知正方體,求二面角的大小。(課本P18例1)
[說明]使學生進一步熟悉作二面角的平面角的方法。
(五)問題拓展
例4如圖,山坡的傾斜度(坡面與水平面所成二面角的度數)是,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是,沿這條路上山,行走100米后升高多少米?
[說明]使學生明白數學既來源于實際又服務于實際。
三、鞏固練習
1。在棱長為1的正方體中,求二面角的大小。
2。若二面角的大小為,P在平面上,點P到的距離為h,求點P到棱l的距離。
四、課堂小結
1。二面角的定義
2。二面角的平面角的定義及其范圍
3。二面角的平面角的常用作圖方法
4。求二面角的大小(作證算答)
五、作業布置
1。課本P18練習14。4(1)
2。在二面角的一個面內有一個點,它到另一個面的距離是10,求它到棱的距離。
3。把邊長為a的正方形ABCD以BD為軸折疊,使二面角A—BD—C成的二面角,求A、C兩點的距離。
六、教學設計說明
本節課的設計不是簡單地將概念直接傳受給學生,而是考慮到知識的形成過程,設法從學生的數學現實出發,調動學生積極參與探索、發現、問題解決全過程。二面角及二面角的平面角這兩大概念的引出均運用了類比的手段和方法。教學過程中通過教師的層層鋪墊,學生的主動探究,使學生經歷概念的形成、發展和應用過程,有意識地加強了知識形成過程的教學。
高中數學教案反思怎么寫篇2
一、課程性質與任務
數學是研究空間形式和數量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。數學課程是中等職業學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數學基礎知識,具備必需的相關技能與能力,為學習專業知識、掌握職業技能、繼續學習和終身發展奠定基礎。二、課程教學目標
1.在九年義務教育基礎上,使學生進一步學習并掌握職業崗位和生活中所必要的數學基礎知識。2.培養學生的計算技能、計算工具使用技能和數據處理技能,培養學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。
3.引導學生逐步養成良好的學習習慣、實踐意識、創新意識和實事求是的科學態度,提高學生就業能力與創業能力。三、教學內容結構
本課程的教學內容由基礎模塊、職業模塊和拓展模塊三個部分構成。
1.基礎模塊是各專業學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。2.職業模塊是適應學生學習相關專業需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。
3.拓展模塊是滿足學生個性發展和繼續學習需要的任意選修內容,教學時數不做統一規定。四、教學內容與要求
(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應用。
理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養要求(分為三項技能與四項能力)
計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規律。
空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。
數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學內容與要求1.基礎模塊(128學時)第1單元集合(10學時)
第2單元不等式(8學時)
第3單元函數(12學時)
第4單元指數函數與對數函數(12學時)
第5單元三角函數(18學時)
第6單元數列(10學時)
第7單元平面向量(矢量)(10學時)
第8單元直線和圓的方程(18學時)
第9單元立體幾何(14學時)
第10單元概率與統計初步(16學時)
2.職業模塊
第1單元三角計算及其應用(16學時)
第2單元坐標變換與參數方程(12學時)
第3單元復數及其應用(10學時)
高中數學教案反思怎么寫篇3
教學目標
知識目標等差數列定義等差數列通項公式
能力目標掌握等差數列定義等差數列通項公式
情感目標培養學生的觀察、推理、歸納能力
教學重難點
教學重點等差數列的概念的理解與掌握
等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用
教學過程
由__《紅高粱》主題曲“酒神曲”引入等差數列定義
問題:多媒體演示,觀察————發現?
一、等差數列定義:
一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。
例1:觀察下面數列是否是等差數列:…。
二、等差數列通項公式:
已知等差數列{an}的首項是a1,公差是d。
則由定義可得:
a2—a1=d
a3—a2=d
a4—a3=d
……
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。
分析:知道a1,d,求an。代入通項公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差數列10,8,6,4…的第20項。
分析:根據a1=10,d=—2,先求出通項公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。
分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。
解:由題意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
練習
1、判斷下列數列是否為等差數列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
2、等差數列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在數列{an}中a1=1,an=an+1+4,則a10=。
提示:d=an+1—an=—4
教師繼續提出問題
已知數列{an}前n項和為……
作業
P116習題3。21,2
高中數學教案反思怎么寫篇4
圓的方程
教學目標
(1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.
(2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.
(3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.
(4)掌握直線和圓的位置關系,會求圓的切線.
(5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.
教學建議
教材分析
(1)知識結構
(2)重點、難點分析
①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求圓的方程,用圓的方程解決相關問題.
②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.
教法建議
(1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.
(2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.
(3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.
(4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.
教學設計示例
圓的一般方程
教學目標:
(1)掌握圓的一般方程及其特點.
(2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.
(3)能用待定系數法,由已知條件求出圓的一般方程.
(4)通過本節課學習,進一步掌握配方法和待定系數法.
教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.
(2)用待定系數法求圓的方程.
教學難點:圓的一般方程特點的研究.
教學用具:計算機.
教學方法:啟發引導法,討論法.
教學過程:
【引入】
前邊已經學過了圓的標準方程
把它展開得
任何圓的方程都可以通過展開化成形如
①
的方程
【問題1】
形如①的方程的曲線是否都是圓?
師生共同討論分析:
如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得
②
顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:
(1)當 時,②表示以 為圓心、以 為半徑的圓;
(2)當 時,②表示一個點 ;
(3)當 時,②不表示任何曲線.
總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.
圓的一般方程的定義:
當 時,①表示以 為圓心、以 為半徑的圓,
此時①稱作圓的一般方程.
即稱形如 的方程為圓的一般方程.
【問題2】圓的一般方程的特點,與圓的標準方程的異同.
(1) 和 的系數相同,都不為0.
(2)沒有形如 的二次項.
圓的一般方程與一般的二元二次方程
③
相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.
圓的一般方程與圓的標準方程各有千秋:
(1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.
(2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.
【實例分析】
例1:下列方程各表示什么圖形.
(1) ;
(2) ;
(3) .
學生演算并回答
(1)表示點(0,0);
(2)配方得 ,表示以 為圓心,3為半徑的圓;
(3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.
例2:求過三點 , , 的圓的方程,并求出圓心坐標和半徑.
分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.
解:設圓的方程為
因為 、 、 三點在圓上,則有
解得: , ,
所求圓的方程為
可化為
圓心為 ,半徑為5.
請同學們再用標準方程求解,比較兩種解法的區別.
【概括總結】通過學生討論,師生共同總結:
(1)求圓的方程多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.
(2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.
下面再看一個問題:
例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.
解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.
∵
∴
即
化簡得
點 在曲線上,并且曲線為圓 內部的一段圓弧.
【練習鞏固】
(1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)
(2)求經過三點 、 、 的圓的方程.
分析:用圓的一般方程,代入點的坐標,解方程組得圓的方程為 .
(3)課本第79頁練習1,2.
【小結】師生共同總結:
(1)圓的一般方程及其特點.
(2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.
(3)用待定系數法求圓的方程.
【作業】課本第82頁5,6,7,8.
高中數學教案反思怎么寫篇5
課題:指數與指數冪的運算
課型:新授課
教學方法:講授法與探究法
教學媒體選擇:多媒體教學
指數與指數冪的運算——學習者分析:
1.需求分析:在研究指數函數前,學生應熟練掌握指數與指數冪的運算,通過本節內容將指數的取值范圍擴充到實數,為學習指數函數打基礎.
2.學情分析:在中學階段已經接觸過正數指數冪的運算,但是這對我們研究指數函數是遠遠不夠的,通過本節課使學生對指數冪的運算和理解更加深入.
指數與指數冪的運算——學習任務分析:
1.教材分析:本節的內容蘊含了許多重要的數學思想方法,如推廣思想,逼近思想,教材充分關注與實際問題的聯系,體現了本節內容的重要性和數學的實際應用價值.
2.教學重點:根式的概念及n次方根的性質;分數指數冪的意義及運算性質;分數指數冪與根式的互化.
3.教學難點:n次方根的性質;分數指數冪的意義及分數指數冪的運算.
指數與指數冪的運算——教學目標闡明:
1.知識與技能:理解根式的概念及性質,掌握分數指數冪的運算,能夠熟練的進行分數指數冪與根式的互化.
2.過程與方法:通過探究和思考,培養學生推廣和逼近的數學思想方法,提高學生的知識遷移能力和主動參與能力.
3.情感態度和價值觀:在教學過程中,讓學生自主探索來加深對n次方根和分數指數冪的理解,而具有探索能力是學習數學、理解數學、解決數學問題的重要方面.
教學流程圖:
指數與指數冪的運算——教學過程設計:
一.新課引入:
(一)本章知識結構介紹
(二)問題引入
1.問題:當生物體死亡后,它機體內原有的碳14會按確定的規律衰減,大約每經過5730年衰減為原來的一半,這個時間稱為“半衰期”.根據此規律,人們獲得了生物體內含量P與死亡年數t之間的關系:
(1)當生物死亡了5730年后,它體內的碳14含量P的值為
(2)當生物死亡了5730×2年后,它體內的碳14含量P的值為
(3)當生物死亡了6000年后,它體內的碳14含量P的值為
(4)當生物死亡了10000年后,它體內的碳14含量P的值為
2.回顧整數指數冪的運算性質
整數指數冪的運算性質:
3.思考:這些運算性質對分數指數冪是否適用呢?
【師】這就是我們今天所要學習的內容《指數與指數冪的運算》
【板書】2.1.1指數與指數冪的運算
二.根式的概念:
【師】下面我們來看幾個簡單的例子.口述平方根,立方根的概念引導學生總結n次方根的概念..
【板書】平方根,立方根,n次方根的符號,并舉一些簡單的方根運算,以便學生觀察總結.
【師】現在我們請同學來總結n次方根的概念..
1.根式的概念
【板書】概念
即如果一個數的n次方等于a(n>1,且n∈N_),那么這個數叫做a的n次方根.
【師】通過剛才所舉的例子不難看出n的奇偶以及a的正負都會影響a的n次方根,下面我們來共同完成這樣一個表格.
【板書】表格
【師】通過這個表格,我們知道負數沒有偶次方根.那么0的n次方根是什么?
【學生】0的n次方根是0.
【師】現在我們來對這個符號作一說明.
例1.求下列各式的值
【注】本題較為簡單,由學生口答即可,此處過程省略.
三.n次方根的性質
【注】對于1提問學生a的取值范圍,讓學生思考便能得出結論.
【注】對于2,少舉幾個例子讓學生觀察,并起來說他們的結論.
1.n次方根的性質
四.分數指數冪
【師】這兩個根式可以寫成分數指數冪的形式,是因為根指數能整除被開方數的指數,那么請大家思考下面的問題.
思考:根指數不能整除被開方數的指數時還能寫成分數指數冪的形式嗎
【師】如果成立那么它的意義是什么,我們有這樣的規定.
(一)分數指數冪的意義:
1.我們規定正數的正分數指數冪的意義是:
2.我們規定正數的負分數指數冪的意義是:
3.0的正分數指數冪等于0,0的負分數指數冪沒有意義.
(二)指數冪運算性質的推廣:
五.例題
例2.求值
【注】此處例2讓學生上黑板做,例3待學生完成后老師在黑板板演,例4讓學生黑板上做,然后糾正錯誤.
六.課堂小結
1.根式的定義;
2.n次方根的性質;
3.分數指數冪.
七.課后作業
P59習題2.1A組1.2.4.
八.課后反思
1.在第一節課的時候沒有把重要的內容寫在黑板上,而且運算性質中a,r,s的條件沒有給出,另外課件中有一處錯誤.第二節課時改正了第一節課的錯誤.
2.有許多問題應讓學生回答,不能自問自答.根式性質的思考沒有講清楚,應該給學生更多的時間來回答和思考問題,與之互動太少.
3.講課過程中還有很多細節處理不好,并且講課聲音較小,沒有起伏.
4.課前的章節知識結構很好,引入簡單到位,亮點是概念后的表格.
高中數學教案反思怎么寫篇6
教學目標
1.使學生掌握指數函數的概念,圖象和性質.
(1)能根據定義判斷形如什么樣的函數是指數函數,了解對底數的限制條件的合理性,明確指數函數的定義域.
(2)能在基本性質的指導下,用列表描點法畫出指數函數的圖象,能從數形兩方面認識指數函數的性質.
(3) 能利用指數函數的性質比較某些冪形數的大小,會利用指數函數的圖象畫出形如的圖象.
2. 通過對指數函數的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法.
3.通過對指數函數的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣.使學生善于從現實生活中數學的發現問題,解決問題.
教學建議
教材分析
(1) 指數函數是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以指數函數應重點研究.
(2) 本節的教學重點是在理解指數函數定義的基礎上掌握指數函數的圖象和性質.難點是對底數在和時,函數值變化情況的區分.
(3)指數函數是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從指數函數的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究.
教法建議
(1)關于指數函數的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是指數函數.
(2)對底數
的限制條件的理解與認識也是認識指數函數的重要內容.如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對指數函數的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來.
關于指數函數圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.