小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高中數(shù)學(xué)教案2022模板

時間: 金成 數(shù)學(xué)教案

在教學(xué)工作者實際的教學(xué)活動中,編寫教案是必不可少的,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。我們應(yīng)該怎么寫教案呢?下面小編帶來高中數(shù)學(xué)教案2022模板5篇,希望大家喜歡。

高中數(shù)學(xué)教案2022模板  篇1

各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進行說課。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

(二)教學(xué)內(nèi)容

本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。

二、教學(xué)目標(biāo)分析

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。

三、重難點分析

一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。

要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。

四、教法與學(xué)法分析

(一)學(xué)法指導(dǎo)

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(二)教法分析

本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

建構(gòu)主義學(xué)習(xí)理論認為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

五、課堂設(shè)計

本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。

(一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系

本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

為此,我設(shè)計了以下幾個問題:

1、請同學(xué)們解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

學(xué)生回答,我板書。

2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質(zhì)就容易得到。

3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。

4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關(guān)系:

①2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸

交點的橫坐標(biāo)。

②2x-70的解集正是函數(shù)y=2x-7的圖象

在x軸的上方的點的橫坐標(biāo)的集合。

③2x-70的解集正是函數(shù)y=2x-7的圖象

在x軸的下方的點的橫坐標(biāo)的集合。

三組關(guān)系的得出,實際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時,學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的`圖象來求不等式x2-x-60的解集。

(二)比舊悟新,引出“三個二次”的關(guān)系

為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進行探究。

看函數(shù)y=x2-x-6的圖象并說出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此時,學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。

學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?

(三)歸納提煉,得出“三個二次”的關(guān)系

1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。

2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項系數(shù)由負化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)

(四)應(yīng)用新知,熟練掌握一元二次不等式的解集

借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認識,為鞏固所學(xué)知識,我們一起來完成以下例題:

例1、解不等式2x2-3x-20

解:因為Δ0,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。

下面我們接著學(xué)習(xí)課本例2。

例2 解不等式-3x2+6x2

課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對于二次項系數(shù)是負數(shù)(即a0)的一元二次不等式,可以先把二次項系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。

通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點,給予熱情表揚。

4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。

(五)總結(jié)

解一元二次不等式的“四部曲”:

(1)把二次項的系數(shù)化為正數(shù)

(2)計算判別式Δ

(3)解對應(yīng)的一元二次方程

(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

(六)作業(yè)布置

為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。

(1)必做題:習(xí)題1.5的1、3題

(2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數(shù)k的取值范圍。

(七)板書設(shè)計

一元二次不等式解法(1)

五、教學(xué)效果評價

本節(jié)課立足課本,著力挖掘,設(shè)計合理,層次分明。以“三個一次關(guān)系→三個二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗求知的樂趣。

高中數(shù)學(xué)教案2022模板 篇3

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

(2)使學(xué)生掌握組合數(shù)的計算公式;

(3)通過學(xué)習(xí)組合知識,讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

教學(xué)重點難點

重點是組合的定義、組合數(shù)及組合數(shù)的公式;

難點是解組合的應(yīng)用題.

教學(xué)過程設(shè)計

(-)導(dǎo)入新課

(教師活動)提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學(xué)生活動)討論并回答.

答案提示:(1)排列;(2)組合.

[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

設(shè)計意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.

(二)新課講授

[提出問題 創(chuàng)設(shè)情境]

(教師活動)指導(dǎo)學(xué)生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個組合是什么?

3.一個組合與一個排列有何區(qū)別?

(學(xué)生活動)閱讀回答.

(教師活動)對照課文,逐一評析.

設(shè)計意圖:激活學(xué)生的思維,使其將所學(xué)的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.

【歸納概括 建立新知】

(教師活動)承接上述問題的回答,展示下面知識.

[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .

[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學(xué)生活動)傾聽、思索、記錄.

(教師活動)提出思考問題.

[投影] 與 的關(guān)系如何?

(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;

第2步,求每一個組合中 個元素的全排列數(shù)為 .根據(jù)分步計數(shù)原理,得到

[字幕]公式1:

公式2:

(學(xué)生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

【例題示范 探求方法】

(教師活動)打出字幕,給出示范,指導(dǎo)訓(xùn)練.

[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.

例2 計算:(1) ;(2) .

(學(xué)生活動)板演、示范.

(教師活動)講評并指出用兩種方法計算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學(xué)生活動)思考分析.

解 首先,根據(jù)組合的定義,有

其次,由原不等式轉(zhuǎn)化為

解得 ②

綜合①、②,得 ,即

[點評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

設(shè)計意圖:例題教學(xué)循序漸進,讓學(xué)生鞏固知識,強化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

【反饋練習(xí) 學(xué)會應(yīng)用】

(教師活動)給出練習(xí),學(xué)生解答,教師點評.

[課堂練習(xí)]課本P99練習(xí)第2,5,6題.

[補充練習(xí)]

[字幕]1.計算:

2.已知 ,求 .

(學(xué)生活動)板演、解答.

設(shè)計意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

(三)小結(jié)

(師生活動)共同小結(jié).

本節(jié)主要內(nèi)容有

1.組合概念.

2.組合數(shù)計算的兩個公式.

(四)布置作業(yè)

1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

2.思考題:某學(xué)習(xí)小組有8個同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

3.研究性題:

在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

(五)課后點評

在學(xué)習(xí)了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導(dǎo)出組合數(shù)公式,同時調(diào)控進行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

高中數(shù)學(xué)教案2022模板 篇4

教學(xué)目標(biāo):

1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).

2.能識別和理解簡單的框圖的功能.

3. 能運用三種基本邏輯結(jié)構(gòu)設(shè)計流程圖以解決簡單的問題.

教學(xué)方法:

1. 通過模仿、操作、探索,經(jīng)歷設(shè)計流程圖表達求解問題的過程,加深對流程圖的感知.

2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).

教學(xué)過程:

一、問題情境

1.情境:

某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為

其中(單位:)為行李的重量.

試給出計算費用(單位:元)的一個算法,并畫出流程圖.

二、學(xué)生活動

學(xué)生討論,教師引導(dǎo)學(xué)生進行表達.

解 算法為:

輸入行李的重量;

如果,那么,

否則;

輸出行李的重量和運費.

上述算法可以用流程圖表示為:

教師邊講解邊畫出第10頁圖1-2-6.

在上述計費過程中,第二步進行了判斷.

三、建構(gòu)數(shù)學(xué)

1.選擇結(jié)構(gòu)的概念:

先根據(jù)條件作出判斷,再決定執(zhí)行哪一種

操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).

如圖:虛線框內(nèi)是一個選擇結(jié)構(gòu),它包含一個判斷框,當(dāng)條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.

2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判

斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計;

(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)

行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;

(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和

兩個退出點.

3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?

高中數(shù)學(xué)教案2022模板 篇5

[學(xué)習(xí)目標(biāo)]

(1)會用坐標(biāo)法及距離公式證明Cα+β;

(2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

[學(xué)習(xí)重點]

兩角和與差的正弦、余弦、正切公式

[學(xué)習(xí)難點]

余弦和角公式的推導(dǎo)

[知識結(jié)構(gòu)]

1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、當(dāng)α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

4、關(guān)于公式的正用、逆用及變用

高中數(shù)學(xué)優(yōu)秀教案4

一、教學(xué)目標(biāo):

掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

二、教學(xué)重點:

向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。

三、教學(xué)過程:

(一)主要知識:

1、掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略

四、小結(jié):

1、進一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應(yīng)用問題,

2、滲透數(shù)學(xué)建模的思想,切實培養(yǎng)分析和解決問題的能力。

五、作業(yè):

22273 主站蜘蛛池模板: 环氧乙烷灭菌器_压力蒸汽灭菌器_低温等离子过氧化氢灭菌器 _低温蒸汽甲醛灭菌器_清洗工作站_医用干燥柜_灭菌耗材-环氧乙烷灭菌器_脉动真空压力蒸汽灭菌器_低温等离子灭菌设备_河南省三强医疗器械有限责任公司 | 北京工业设计公司-产品外观设计-产品设计公司-千策良品工业设计 北京翻译公司-专业合同翻译-医学标书翻译收费标准-慕迪灵 | 众品地板网-地板品牌招商_地板装修设计_地板门户的首选网络媒体。 | 全自动过滤器_反冲洗过滤器_自清洗过滤器_量子除垢环_量子环除垢_量子除垢 - 安士睿(北京)过滤设备有限公司 | 保定市泰宏机械制造厂-河北铸件厂-铸造厂-铸件加工-河北大件加工 | 齿式联轴器-弹性联轴器-联轴器厂家-江苏诺兴传动联轴器制造有限公司 | 福建自考_福建自学考试网| 环氧乙烷灭菌器_压力蒸汽灭菌器_低温等离子过氧化氢灭菌器 _低温蒸汽甲醛灭菌器_清洗工作站_医用干燥柜_灭菌耗材-环氧乙烷灭菌器_脉动真空压力蒸汽灭菌器_低温等离子灭菌设备_河南省三强医疗器械有限责任公司 | 筒瓦厂家-仿古瓦-寺庙-古建琉璃瓦-宜兴市古典园林建筑陶瓷厂有限公司 | 深圳市宏康仪器科技有限公司-模拟高空低压试验箱-高温防爆试验箱-温控短路试验箱【官网】 | 升降机-高空作业车租赁-蜘蛛车-曲臂式伸缩臂剪叉式液压升降平台-脚手架-【普雷斯特公司厂家】 | 对辊破碎机-液压双辊式,强力双齿辊,四辊破碎机价格_巩义市金联机械设备生产厂家 | 山楂片_雪花_迷你山楂片_山楂条饼厂家-青州市丰源食品厂 | 两头忙,井下装载机,伸缩臂装载机,30装载机/铲车,50装载机/铲车厂家_价格-莱州巨浪机械有限公司 | AGV无人叉车_激光叉车AGV_仓储AGV小车_AGV无人搬运车-南昌IKV机器人有限公司[官网] | 扬州汇丰仪表有限公司 | 贵阳用友软件,贵州财务软件,贵阳ERP软件_贵州优智信息技术有限公司 | 塑胶跑道施工-硅pu篮球场施工-塑胶网球场建造-丙烯酸球场材料厂家-奥茵 | 钣金加工厂家-钣金加工-佛山钣金厂-月汇好| 精密模具制造,注塑加工,吹塑和吹瓶加工,EPS泡沫包装生产 - 济南兴田塑胶有限公司 | 医用酒精_84消毒液_碘伏消毒液等医用消毒液-漓峰消毒官网 | 油冷式_微型_TDY电动滚筒_外装_外置式电动滚筒厂家-淄博秉泓机械有限公司 | 「阿尔法设计官网」工业设计_产品设计_产品外观设计 深圳工业设计公司 | 深圳美安可自动化设备有限公司,喷码机,定制喷码机,二维码喷码机,深圳喷码机,纸箱喷码机,东莞喷码机 UV喷码机,日期喷码机,鸡蛋喷码机,管芯喷码机,管内壁喷码机,喷码机厂家 | 双吸泵,双吸泵厂家,OS双吸泵-山东博二泵业有限公司 | 石家庄救护车出租_重症转院_跨省跨境医疗转送_活动赛事医疗保障_康复出院_放弃治疗_腾康26年医疗护送转诊团队 | 六维力传感器_六分量力传感器_模腔压力传感器-南京数智微传感科技有限公司 | 吹田功率计-长创耐压测试仪-深圳市新朗普电子科技有限公司 | lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 耐磨陶瓷,耐磨陶瓷管道_厂家-淄博拓创陶瓷科技| 主题班会网 - 安全教育主题班会,各类主题班会PPT模板 | 物流之家新闻网-最新物流新闻|物流资讯|物流政策|物流网-匡匡奈斯物流科技 | 塑料异型材_PVC异型材_封边条生产厂家_PC灯罩_防撞扶手_医院扶手价格_东莞市怡美塑胶制品有限公司 | 北京百度网站优化|北京网站建设公司-百谷网络科技 | 广州昊至泉水上乐园设备有限公司 | 广东燎了网络科技有限公司官网-网站建设-珠海网络推广-高端营销型外贸网站建设-珠海专业h5建站公司「了了网」 | 高尔夫球杆_高尔夫果岭_高尔夫用品-深圳市新高品体育用品有限公司 | 裹包机|裹膜机|缠膜机|绕膜机-上海晏陵智能设备有限公司 | 小港信息港-鹤壁信息港 鹤壁老百姓便民生活信息网站 | 3dmax渲染-效果图渲染-影视动画渲染-北京快渲科技有限公司 | 点焊机-缝焊机-闪光对焊机-电阻焊设备生产厂家-上海骏腾发智能设备有限公司 |