高中數學個人教案
知識掌握的巔峰,應該在一輪復習之后,也就是在你把所有知識重新撿起來之后。這樣看來,應對高二這一變化的較優選擇,是在高二還在學習新知識時,下面小編帶來高中數學個人教案,希望大家喜歡。
高中數學個人教案 篇1
教學目的:掌握圓的標準方程,并能解決與之有關的問題
教學重點:圓的標準方程及有關運用
教學難點:標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
1.說出下列圓的方程
⑴圓心(3,-2)半徑為5
⑵圓心(0,3)半徑為3
2.指出下列圓的圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3.判斷3x-4y-10=0和x2+y2=4的位置關系
4.圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)
練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業P811,2,3,4
高中數學個人教案 篇2
一、教學目標:
掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
二、教學重點:
向量的性質及相關知識的綜合應用。
三、教學過程:
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略
四、小結:
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數學建模的思想,切實培養分析和解決問題的能力。
高中數學個人教案 篇3
1。5 (1)充分條件與必要條件
一、教學目標設計
通過實例理解充分條件、必要條件的意義。
能夠在簡單的問題情境中判斷條件的充分性、必要性。
二、教學重點及難點
充分條件、必要條件的判斷;
充分條件、必要條件的判斷方法。
三、教學流程設計
四、教學過程設計
一、概念引入
早在戰國時期,《墨經》中就有這樣一段話有之則必然,無之則未必不然,是為大故無之則必不然,有之則未必然,是為小故。
今天,在日常生活中,常聽人說:這充分說明,沒有這個必要等,在數學中,也講充分和必要,這節課,我們就來學習教材第一章第五節充分條件與必要條件。
二、概念形成
1、 首先請同學們判斷下列命題的真假
(1)若兩三角形全等,則兩三角形的面積相等。
(2)若三角形有兩個內角相等,則這個三角形是等腰三角形。
(3)若某個整數能夠被4整除,則這個整數必是偶數。
(4) 若ab=0,則a=0。
解答:命題(2)、(3)、(4)為真。命題(4)為假;
2、請同學用推斷符號寫出上述命題。
解答:(1)兩三角形全等 兩三角形的面積相等。
(2) 三角形有兩個內角相等 三角形是等腰三角形。
(3) 某個整數能夠被4整除則這個整數必是偶數;
(4)ab=0 a=0。
3、充分條件與必要條件
繼續結合上述實例說明什么是充分條件、什么是必要條件。
若某個整數能夠被4整除則這個整數必是偶數中,我們稱某個整數能夠被4整除是這個整數必是偶數的充分條件,可以解釋為:只要某個整數能夠被4整除成立,這個整數必是偶數就一定成立;而稱這個整數必是偶數是某個整數能夠被4整除的必要條件,可以解釋成如果某個整數能夠被4整除 成立,就必須要這個整數必是偶數成立
充分條件:一般地,用、分別表示兩件事,如果這件事成立,可以推出這件事也成立,即,那么叫做的充分條件。[說明]:①可以解釋為:為了使成立,具備條件就足夠了。②可進一步解釋為:有它即行,無它也未必不行。③結合實例解釋為: x = 0 是 xy = 0 的充分條件,xy = 0不一定要 x = 0。)
必要條件:如果,那么叫做的必要條件。
[說明]:①可以解釋為若,則叫做的必要條件,是的充分條件。②無它不行,有它也不一定行③結合實例解釋為:如 xy = 0是 x = 0的必要條件,若xy0,則一定有 x若xy = 0也不一定有 x = 0。
回答上述問題(1)、(2)中的條件關系。
(1)中:兩三角形全等是兩三角形的面積相等的充分條件;兩三角形的面積相等是兩三角形全等的必要條件。
(2)中:三角形有兩個內角相等是三角形是等腰三角形的充分條件;三角形是等腰三角形是三角形有兩個內角相等的必要條件。
4、拓廣引申
把命題:若某個整數能夠被4整除,則這個整數必是偶數中的條件與結論分別記作與,那么,原命題與逆命題的真假同與之間有什么關系呢?
關系可分為四類:
(1)充分不必要條件,即,而
(2)必要不充分條件,即,而
(3)既充分又必要條件,即,又有
(4)既不充分也不必要條件,即,又有。
三、典型例題(概念運用)
例1:(1)已知四邊形ABCD是凸四邊形,那么AC=BD是四邊形ABCD是矩形的什么條件?為什么?(課本例題p22例4)
(2) 是 的什么條件。
(3)a+b是1,b什么條件。
解:(1)AC=BD是四邊形ABCD是矩形的必要不充分條件。
(2)充分不必要條件。
(3)必要不充分條件。
[說明]①如果把命題條件與結論分別記作與,則既要對進行判斷,又要對進行判斷。②要否定條件的充分性、必要性,則只需舉一反例即可。
例2:判斷下列電路圖中p與q的充要關系。其中p:開關閉合;q:
燈亮。(補充例題)
[說明]①圖中含有兩個開關時,p表示其中一個閉合,另一個情況不確定。②加強學科之間的橫向溝通,通過圖示,深化概念認識。
例3、探討下列生活中名言名句的充要關系。(補充例題)
(1)頭發長,見識短。 (2)驕兵必敗。
(3)有志者事竟成。 (4)春回大地,萬物復蘇。
(5)不入虎穴、焉得虎子 (6)四肢發達,頭腦簡單
[說明]通過本例,充分調動學生生活經驗,使得抽象概念形象化。從而激發學生學習熱情。
四、鞏固練習
1、課本P/22練習1。5(1)
2:填表(補充)
p q p是q的
什么條件 q是p的
什么條件
兩個角相等 兩個角是對頂角
內錯角相等 兩直線平行
四邊形對角線相等 四邊形是平行邊形
a=b ac=bc
[說明]通過練習,及時鞏固所學新知,反饋教學效果。
五、課堂小結
1、本節課主要研究的內容:
推斷符號,
充分條件的意義 命題充分性、必要性的判斷。
必要條件的意義
2、 充分條件、必要條件判別步驟:
① 認清條件和結論。
② 考察p q和q p的真假。
3、充分條件、必要條件判別技巧:
① 可先簡化命題。
② 否定一個命題只要舉出一個反例即可。
③ 將命題轉化為等價的逆否命題后再判斷。
六、課后作業
書面作業:課本P/24習題1。51,2,3。
五、教學設計說明
1、充分條件、必要條件以及下節課中充要條件與集合的概念一樣涉及到數學的各個分支,用推出關系的形式給出它的定義,對高一學生只要求知道它的意義,并能判斷簡單的充分條件與必要條件。
2、由于充要條件與命題的真假、命題的條件與結論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結論來說,是否充分,從而引入充分條件的概念,進而引入必要條件的概念。
3、教材中對充分條件、必要條件的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結論之間的關系來認識充分條件的概念,從互為逆否命題的等價性來引出必要條件的概念。
4、由于這節課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發學生的學習興趣是關鍵。教學中始終要注意以學生為主,結合相關學科及學生生活經驗讓學生在自我思考、相互交流中去給概念下定義,去體會概念的本質屬性。
高中數學個人教案 篇4
一、教學目標
1.把握菱形的判定.
2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
3.通過教具的演示培養學生的學習愛好.
4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
二、教法設計
觀察分析討論相結合的方法
三、重點·難點·疑點及解決辦法
1.教學重點:菱形的判定方法.
2.教學難點:菱形判定方法的綜合應用.
四、課時安排
1課時
五、教具學具預備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設計
教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
復習提問
1.敘述菱形的定義與性質.
2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.
引入新課
師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法.
此外還有別的兩種判定方法,下面就來學習這兩種方法.
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形.
菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
分析判定2:
師問:本定理有幾個條件?
生答:兩個.
師問:哪兩個?
生答:(1)是平行四邊形(2)兩條對角線互相垂直.
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等.
(由學生口述證實)
證實時讓學生注重線段垂直平分線在這里的應用,
師問:對角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對角線,但都不是菱形.
菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):
注重:(2)與(4)的題設也是從四邊形出發,和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.
例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.
求證:四邊形是菱形(按教材講解).
總結、擴展
1.小結:
(1)歸納判定菱形的四種常用方法.
(2)說明矩形、菱形之間的區別與聯系.
2.思考題:已知:如圖4△中,,平分,,,交于.
求證:四邊形為菱形.
八、布置作業
教材P159中9、10、11、13
高中數學個人教案 篇5
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學工具
投影儀
教學過程
一、復習引入:
1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ
五,課堂小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
六、課后作業
P107習題2.4A組2、7題
課后小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
課后習題
作業
P107習題2.4A組2、7題