小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

高中數學教案大全

時間: 新華 數學教案

寫教案時,需要注重教學策略和教學方法的設計,選擇合適的教學手段,以便提高教學效果。優秀的高中數學教案大全是怎么寫的?小編給大家整理了高中數學教案大全,希望對大家有所幫助。

高中數學教案大全篇1

2。2。1等差數列學案

一、預習問題:

1、等差數列的定義:一般地,如果一個數列從起,每一項與它的前一項的差等于同一個,那么這個數列就叫等差數列,這個常數叫做等差數列的,通常用字母表示。

2、等差中項:若三個數組成等差數列,那么A叫做與的,

即或。

3、等差數列的單調性:等差數列的公差時,數列為遞增數列;時,數列為遞減數列;時,數列為常數列;等差數列不可能是。

4、等差數列的通項公式:。

5、判斷正誤:

①1,2,3,4,5是等差數列;()

②1,1,2,3,4,5是等差數列;()

③數列6,4,2,0是公差為2的等差數列;()

④數列是公差為的等差數列;()

⑤數列是等差數列;()

⑥若,則成等差數列;()

⑦若,則數列成等差數列;()

⑧等差數列是相鄰兩項中后項與前項之差等于非零常數的數列;()

⑨等差數列的公差是該數列中任何相鄰兩項的差。()

6、思考:如何證明一個數列是等差數列。

二、實戰操作:

例1、(1)求等差數列8,5,2,的第20項。

(2)是不是等差數列中的項?如果是,是第幾項?

(3)已知數列的公差則

例2、已知數列的通項公式為,其中為常數,那么這個數列一定是等差數列嗎?

例3、已知5個數成等差數列,它們的和為5,平方和為求這5個數。

高中數學教案大全篇2

一、單元教學內容分析

本章節內容教學北師大版教材安排在三角函數章節之后,教本必修四的中間位置,為后面推導和差角公式做好鋪墊,為解三角形問題和平面幾何中的許多計算問題提供便利工具。

向量既有代數特征,又有幾何特征,是溝通代數與幾何的橋梁。向量具有代數特征,運算及其規律是代數學研究的基本問題。向量可以進行多種運算,如向量加、減、數乘和叉乘等。向量運算具有一系列豐富的運算性質,與數運算相比,向量運算擴充了運算的對象和運算的性質。向量具有幾何特征,它不僅可以描述、刻畫幾何中的點、線、面及其位置關系,數量關系,還可以表示空間當中的曲線與曲面,是研究幾何問題的基本工具。本教材能從學生熟悉的實例出發,經過觀察、分析、歸納等方法概括出向量的相關概念,比以往教材更能使學生產生自然而親切的感覺,有助于激發學生的學習興趣,調動學生學習的積極性,使他們真正認識到數學的應用價值,從而提高學生應用數學的意識。

向量是刻畫現實世界的重要的數學模型。它為理解抽象代數、線性代數、泛函分析提供了基本數學模型。他與物理學科緊密相連。由于向量是近代數學中重要和基本的數學概念,是溝通代數、幾何與三角函數的一種重要工具,它有極其豐富的實際背景,有著廣泛的實際應用,因此它具有很高的教育教學價值,它對更新和完善知識結構具有重要的意義。

教材結合向量的幾何背景——有向線段,引入向量的表示法,規定了向量的長度的概念。定義了零向量、單位向量、平行向量和共線向量等概念。對于許多舊有的知識利用向量方法去處理,就會變得非常簡捷,甚至變得十分明了,從而有助于學生對這些知識有更深刻的理解,更牢固的記憶,更自如的應用,總之,有助于學生建立良好的數學認知結構。通過本部分內容的學習,可以促使學生認識到向量與實際生活緊密相連,它在解決實際問題當中有著廣泛應用。

二、單元學生情況分析

1、學生在初中階段接觸過物理學里面的矢量,已具備基本的認知水平和運算能力,具備在運算中探索和發現數學結論的基本能力。

2、學生已基本掌握函數和三角函數章節的基礎知識,會運用數形結合法,整體代換,分類討論法,類比思想解決實際問題。

3、學生已具備基本的分析和解決數學問題的勇氣和智慧。

三、教學目標

1.知識與技能目標

(1)理解并掌握平面向量的基本概念。通過力與力的分析實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示。

(2)通過實例,掌握向量的加、減、數乘向量和兩向量數量積運算,并理解其幾何意義。

(3)理解并掌握向量共線和垂直問題。理解平面向量基本定理及其意義。掌握平面向量的正交分解及其坐標表示。會用坐標表示向量的加、減、數乘向量及數量積運算。

(4)通過物理中“功”等實例,理解平面向量數量積的含義及其物理意義。體會平面向量的數量積與向量投影的關系。掌握數量積的坐標表示,能運用數量積表示兩個向量的夾角,會用數量積來判斷向量的垂直問題。

2.過程與方法目標

(1)通過實例讓學生親身經歷觀察、分析、歸納、抽象概括的思維過程。感受和認知不同維度中的向量表示。

(2)通過讓學生體會平面向量數量積的物理意義和幾何意義,體會數學與物理是密切聯系的。

(3)經歷用向量方法解決某些簡單的平面幾何及力學問題與其他一些實際問題的過程,體會向量是一種處理幾何問題、物理問題等的工具,使學生的運算能力和解決實際問題的能力得到提升。

3.情感、態度與價值觀

(1)從學生熟悉的生活實例出發建立平面向量概念,激發學生的學習興趣。從物理知識引入到數學知識的形成過程,使學生體會到知識之間的相互聯系,建立全面、科學的價值觀。

(2)通過對向量正交分解的學習,使學生進一步體會一般的問題往往歸結為人們最熟悉的特殊問題。

(3)通過對本章節內容的學習,使學生體會到數學和其他知識相聯系,體會數學作為解決問題的工具的作用。

重點:

1.平面向量的概念,運算,共線問題,平面向量的基本定理。

2.平面向量的坐標表示,向量數量積的概念和性質,向量的垂直問題。

3.體會向量在解決平面幾何問題和物理問題中的作用。

難點:

1.對自由向量,向量加、減法數乘向量定義的理解和對平面向量基本定理理解。

2.對平面向量運算坐標表示及向量數量積概念的理解,平面向量數量積的應用。

3.用向量表示幾何關系。

四、單元教學活動

1.引入向量相關概念時,除用教材中給出的實例外,鼓勵學生列舉實際生活中的其他實例。

2.學習向量知識的同時,盡量地聯系熟悉的物理現象或其他生活實例,用向量表述和刻畫。以便讓學生領悟到知識之間和學科之間的相互聯系。

3.通過協作討論,根據生活中的實際案例,邊了解概念,邊畫圖;邊進行計算,邊畫圖;進一步培養學生數形結合、形象思考、分析問題的習慣。

4.在學習本章知識的過程中,應注意向量運算的兩個方面:幾何意義與代數表示。由于新知識的學習過程中,它們相對孤立,學生對他們的認識也就不容易形成體系。所以在教授新課時應有意識地做一些滲透和鋪墊,在章節小結時應強調它們的區別與聯系,以便學生更加全面、深刻的認識向量。

高中數學教案大全篇3

一、教學目標

1.知識與技能

(1)掌握畫三視圖的基本技能

(2)豐富學生的空間想象力

2.過程與方法

主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態度與價值觀

(1)提高學生空間想象力

(2)體會三視圖的作用

二、教學重點、難點

重點:畫出簡單組合體的三視圖

難點:識別三視圖所表示的空間幾何體

三、學法與教學用具

1.學法:觀察、動手實踐、討論、類比

2.教學用具:實物模型、三角板

四、教學思路

(一)創設情景,揭開課題

“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

在初中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

(二)實踐動手作圖

1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;

2.教師引導學生用類比方法畫出簡單組合體的三視圖

(1)畫出球放在長方體上的三視圖

(2)畫出礦泉水瓶(實物放在桌面上)的三視圖

學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。

作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。

3.三視圖與幾何體之間的相互轉化。

(1)投影出示圖片(課本P10,圖1.2-3)

請同學們思考圖中的三視圖表示的幾何體是什么?

(2)你能畫出圓臺的三視圖嗎?

(3)三視圖對于認識空間幾何體有何作用?你有何體會?

教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發表對上述問題的看法。

4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。

(三)鞏固練習

課本P12練習1、2

P18習題1.2A組1

(四)歸納整理

請學生回顧發表如何作好空間幾何體的三視圖

(五)課外練習

1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。

2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

高中數學教案大全篇4

在預習教材中的例4的基礎上,證明:若分別是橢圓的左、右焦點,則橢圓上任一點p()到焦點的距離(焦半徑),同時思考當橢圓的焦點在y軸上時,結論如何?(此題意圖是引導學生去進一步探究,為進一步研究橢圓的性質做準備)

本堂課是在學生學習了橢圓的定義、標準方程的基礎上,根據方程研究曲線的性質。按照學生的認知特點,改變了教材中原有安排順序,引導學生從觀察課前預習所作的圖形入手,從分析對稱開始,循序漸進進行探究。由教師點撥、指導,學生研究、合作、體驗來完成。

本節課借助多媒體手段創設問題情境,指導學生研究式學習和體驗式學習(興趣是前提)。例如導入,通過“神州五號”這樣一個人們關注的話題引入,有利于激發學生的興趣。再如,這節課是學生第一次利用曲線方程研究曲線性質,為了解決這一難點,在課前設計中改變了教材原有研究順序,讓學生從觀察一個具體橢圓圖形入手,從觀察到對稱性這一宏觀特征開始研究,符合學生的認知特點,調動了學生主動參與教學的積極性,使他們進行自主探究與合作交流,親身體驗幾何性質的形成與論證過程,變靜態教學為動態教學。在研究范圍這一性質時,課前設計中,只要學生能根據不等式知識解出就可以了,但學生采用了多種方法研究,這時教師沒有打斷他的思路,而是引導幫助他研究,鼓勵學生創新,從而也實現了以學生為主,為學生服務。

在離心率這一性質的教學中,充分利用多媒體手段,以輕松愉悅的動畫演示,化解了知識的難點。

但也有不足的地方:在對具體例子的觀察分析中,設計的問題過于具體,可能束縛了學生的思維,還沒有放開。還有就是少講多學方面也是我今后教學中努力的方向。

感悟:新課堂是活動的課堂,討論、合作交流可課堂,德育教育的課堂,應用現代技術的課堂,因此新教育理念、新課改下的新課堂需要教師和學生一起來培育。

高中數學教案大全篇5

今天我說課的課題是《銳角三角函數》(第一課時),所選用的教材為人教版義務教育課程標準實驗教科書。

根據新課標的理念,對于本節課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標分析,教學方法和學法分析,教學過程分析四個方面加以說明。

一、教材的地位和作用

本節教材是人教版初中數學新教材九年級下第28章第一節內容,是初中數學的重要內容之一。一方面,這是在學習了直角三角形兩銳角關系、勾股定理等知識的基礎上,對直角三角形邊角關系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎,也是高中進一步研究三角函數、反三角函數、三角方程的工具性內容。鑒于這種認識,我認為,本節課不僅有著廣泛的實際應用,而且起著承前啟后的作用。

2、學情分析

從學生的年齡特征和認知特征來看:

九年級學生的思維活躍,接受能力較強,具備了一定的數學探究活動經歷和應用數學的意識。

從學生已具備的知識和技能來看:

九年級學生已經掌握直角三角形中各邊和各角的關系,能靈活運用相似圖形的性質及判定方法解決問題,有較強的推理證明能力,這為順利完成本節課的教學任務打下了基礎

從心理特征來看:初三學生邏輯思維從經驗型逐步向理論型發展,觀察能力,記憶能力和想象能力也隨著迅速發展。

從學生有待于提高的知識和技能來看:

學生要得出直角三角形中邊與角之間的關系,需要觀察、思考、交流,進一步體會數學知識之間的聯系,感受數形結合的思想,體會銳角三角函數的意義,提高應用數學和合作交流的能力。學生可能會產生一定的困難,所以教學中應予以簡單明了,深入淺出的剖析。

3、教學重、難點

根據以上對教材的地位和作用,以及學情分析,結合新課標對本節課的要求,我將本節課的重點確定為:理解正弦函數意義,并會求銳角的正弦值。

難點確定為:根據銳角的正弦值及一邊,求直角三角形的其他邊長。

二、教學目標分析

新課標指出,教學目標應從知識技能、數學思考、問題解決、情感態度等四個方面闡述,而這四維目標又應是緊密聯系的一個完整的整體,學生學知識技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識技能為主線,滲透情感態度,并把前面兩者通過數學思考充分體現在問題解決中。借此結合以上教材分析,我將四個目標進行整合,確定本節課的教學目標為:

1.理解銳角正弦的意義,并會求銳角的正弦值;

2.初步了解銳角正弦取值范圍及增減性;

3.掌握根據銳角的正弦值及直角三角形的一邊,求直角三角形的其他邊長的方法;

4.經歷銳角正弦的意義探索的過程,培養學生觀察分析、類比歸納的探究問題的能力;

5.通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的合理性和嚴謹性,使學生養成積極思考,獨立思考的好習慣,并且同時培養學生的團隊合作精神。

三、教學方法和學法分析

現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的學情情況,本節課我采用“三動五自主”的教學模式,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和合作交流的形式,在教師的指道下發現、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。

另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好地激發學生的學習興趣,增大教學容量,提高教學效率。

本節課的教法采用的是情境引導和探究發現教學法,在教學過程中,通過適宜的問題情境引發新的認知沖突;建立知識間的聯系。教師通過引導、指導、反饋、評價,不斷激發學生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構過程,并運用數學知識解決實際問題,享受數學學習帶來的樂趣。

本節課的學習方法采用自主探究法與合作交流法相結合。本節課數學活動貫穿始終,既有學生自主探究的,也有小組合作交流的,旨在讓學生從自主探究中發展,從合作交流中提高。

四、教學過程

新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下教學環節:

(一)自主探究

1、復習舊知,溫故知新

1、已知:在Rt△ABC中,∠C=900,∠A=350,則∠B=0

2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,則BC=

設計意圖:建構注意主張教學應從學生已有的知識體系出發,相似的三角形性質是本節課深入研究銳角正弦的認知基礎,這樣設計有利于引導學生順利地進入學習情境。

2、創設情境,提出問題

利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學習銳角三角函數(板書課題)

設計意圖:以問題串的形式創設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發學生的學習興趣和求知欲望‘

通過情境創設,學生已激發了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環節———

(二)自主合作

1、發現問題,探求新知(要求學生獨立思考后小組內合作探究)

1、(播放綠化荒山的視頻)課本P74問題與思考,求的值

2、課本P75思考:求的值

設計意圖:現代數學教學論指出,數學知識的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過觀察分析、獨立思考、小組交流等活動,引導學生歸納。

2、分析思考,加深理解

1、課本P75探索,

問:與有什么關系?你能解釋嗎?

2、正弦函數定義:在Rt△ABC中,∠C=900,,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=

對定義的幾點說明:

1、sinA是一個完整的符號,表示∠A的正切習慣上省略“∠”的符號.

2、本章我們只研究銳角∠A的正弦.

3、sinA的范圍:0

設計意圖:數學教學論指出,數學概念要明確其內涵和外延(條件、結論、應用范圍等),通過對銳角正弦定義闡述,使學生的認知結構得到優化,知識體系得到完善,使學生的數學理解又一次突破思維的難點。

通過前面的學習,學生已基本把握了本節課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生引入到下一環節。

(三)自主展示(強化訓練,鞏固雙基)

1、(例1課本P76)已知:在Rt△ABC中,∠C=900,根據圖中數據

求sinA和sinB

2、判斷對錯(學生口答)

(1)若銳角∠A=∠B,則sinA=sinB()

(2)sin600=sin300+sin300()

3、如圖,將Rt△ABC各邊擴大100倍,則tanA的值()

A.擴大100倍B.縮小100倍C.不變D.不確定

4、如圖,平面直角坐標系中點P(3,-4),OP與x軸的夾角為∠1,求sin∠1的值。

設計意圖:幾道例題及練習題由淺入深、由易到難、各有側重,其中例1……例2……,體現新課標提出的讓不同的學生在數學上得到不同發展的教學理念。這一環節總的設計意圖是反饋教學,內化知識。

(四)自主拓展(提高升華)

1、課本習題28.1第1、2、題;

2、選做題:已知:在Rt△ABC中,∠C=900,sinA=,周長為60,求:斜邊AB的長?

以作業的鞏固性和發展性為出發點,我設計了必做題和選做題,必做題是對本節課內容的一個反饋,選做題是對本節課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。

(五)自主評價(小結歸納,拓展深化)

我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優化認知結構,完善知識體系的一種有效手段,為充分發揮學生的主題作用,從學習的知識、方法、體驗是那個方面進行歸納,我設計了這么三個問題:

①通過本節課的學習,你學會了哪些知識;

②通過本節課的學習,你最大的體驗是什么;

③通過本節課的學習,你掌握了哪些學習數學的方法?

以上幾個環節環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態,我設計以下問題加以追問:

1、sinA能為負嗎?

2、比較sin450和sin300的大小?

設計要求:(1)先學生獨立思考后小組內探究

(2)各組交流展示探究結果,并且組內或各組之間自主評價.

設計意圖:

(1)有一定難度需要學生進行合作探究,有利于培養學生善于反思的好習慣.

(2)學生通過互評自評,可以使學生全面了解自己的學習過程,感受自己的成長和進步,同時促進學生對學習及時進行反思,為教師全面了解學生的學習狀況,改進教學,實施因材施教提供重要依據。我的說課到此結束,敬請各位老師批評、指正,謝謝!

教學反思

1.本教學設計以直角三角形為主線,力求體現生活化課堂的理念,讓學生在經歷“問題情境——形成概念——應用拓展——反思提高”的基本過程中,體驗知識間的內在聯系,讓學生感受探究的樂趣,使學生在學中思,在思中學。

2.在教學過程中,重視過程,深化理解,通過學生的主動探究來體現他們的主體地位,教師是通過對學生參與學習的啟發、調整、激勵來體現自己的引導作用,對學生的主體意識和合作交流的能力起著積極作用。

3.正弦是生活中應用較廣泛的三角函數。因而在本節課的設計中力求貼近生活。又從意大利比薩斜塔提煉出了數學問題,讓學生體會學數學、用數學的樂趣。

高中數學教案大全篇6

1、教材分析:

集合是現代數學的基本語言,可以簡潔、準確地表達數學內容。本節是讓學生學會用集合的語言來描述對象,章末我們會用集合和對應的語言來描述函數的概念,可見它是今后數學學習的基礎,也是培養學生抽象概括能力的重要素材。

2、教材目標:

根據素質教育的要求和新課改的精神,我確定教學目標如下:

①知識與技能:

(1)了解集合的含義與集合中元素的特征

(2)熟記常用數集符號

(3)能用列舉、描述法表示具體集合

②過程與方法:讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.讓學生通過觀察、歸納、總結的過程,提高抽象概括能力。

③情感態度與價值觀:使學生感受到學習集合的必要性,增強學習的積極性.

3、教學重點、難點

教學重點:集合的基本概念與表示方法;

教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;說教法

1.學情分析

《集合的含義及表示》這一課時是學生進入高中階段學習、接觸到高中數學的第一堂課,它直接影響到了學生對高中階段數學學習的認識;如果我們教學上過于草率,學生很容易對數學失去學習興趣。再者,這是高中數學課程的第一章的第一課時,是整個高中數學的奠基部分,所以我們不僅要正確地傳授知識,更要把握好教學的難度。如果傳授得過于簡單,那么學生容易麻痹大意,對今后的學習埋下隱患;如果講得太深,那么學生會有畏難心理,也會對今后的學習造成影響。

2.方法選擇

在教學中注意啟發引導,通過預習學案的形式把知識問題化,通過實例引導學生觀察歸納,上課組織學生分組討論,讓他們經歷觀察、猜測、推理、交流、反思的理性思維的基本過程,切實改變學生的學習方法。

說學法

讓學生通過課前結合學案,閱讀教材,自主預習,課上交流、討論、概括,課后復習鞏固三個環節,更好地完成本節課的教學目標。值得提出的是:集合作為一種數學語言,最好的學習方法是使用,所以應該多做轉換練習,

說教學程序

(一)創設情境,揭示課題

軍訓前學校通知:x月x日x點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。

通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主動參與的積極性。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。

(二)研探新知,建構概念

讓學生閱讀課本P2內容,讓小組思考討論,代表發言,師生共同補充答案它們的共同特征:它們都是指定的一組對象。這時我借此引入集合的概念,把一些元素組成的總體叫做集合,簡稱集,通常用大寫字母A,B,C,?表示。把研究的對象稱為元素,通常用小寫拉丁字母a,b,c,?表示;

接下來,我引導學生把集合的涵義進行拓展,期間結合一些師生互動:我們班上的女生能不能構成一個集合,班上身高在1.75米以上的男生能不能構成一個集合,班上高的男生能不能構成一個集合??,通過身邊這些大量例子,讓學生了解集合的概念,并切實感受到學習集合語言的重要性。

對于集合元素的特征:確定性、互異性、無序性。我則在學生了解集合概念基礎上,通過設置三個問題(1)班里個子高的同學能否構成一個集合?(2)在一個給定的集合中能否有相同的元素?(3)班里的全體同學組成一個集合,調整座位后這個集合有沒有變化?調整后的集合和原來的集合是什么關系?讓學生思考:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

這樣設計將知識問題化,問題生活化,激發學生學習的主動性,引導學生歸納出集合中元素的三大特性,用簡練的語言概括為——確定性、互異性、無序性用兩集合相等的概念。

思考3:(1)設集合A表示“1~20以內的所有質數”,那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

(2)對于一個給定的集合A,那么某元素a與集合A有哪幾種可能關系?

(3)如果元素a是集合A中的元素,我們如何用數學化的語言表達?

(4)如果元素a不是集合A中的元素,我們如何用數學化的語言表達?用符號∈或?填空:

[設計說明]這幾個問題比較簡單,直接提問同學回答,并師生一起完善答案。通過問題的層層深入,目的是引導學生歸納出元素與集合的關系及表示方法。

反饋練習:

(1)設A為所有亞洲國家組成的集合,則

中國____A,美國____A,

印度____A,英國____A;

對于集合中常用的符號,我做了這樣處理:簡要介紹后,讓學生用兩三分鐘的時間結合符號特點記憶。目的在于給學生一個信號:課堂上能消化的東西要及時記住。

2.集合的表示法:列舉法和描述法

讓學生自習閱讀課本P3——P4的內容5-7分鐘,接著讓同學試著解決如下三個問題

(1)由大于10小于20的所有整數組成的集合;

(2)表示不等式x-7《3的解集;

(3)由1——20以內的所有素數組成的集合;

把集合的元素一一列舉出來,并用花括號“{}”括起來表示的方法叫做列舉法。用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

通過三個問題不僅檢驗了學生的自學效果,同時也讓學生明白列舉法和描述法兩種方法各自的優缺點,更重要的是對集合的列舉法和描述法的規范表達做進一步強調,最后,我帶領學生分析了課本P4的例題,對集合的列舉法和描述法的規范表達做進一

步的強調,讓學生完成書上的習題,并請幾個學生上臺來演練,通過練習達到及時的反饋。

(四)歸納整理,整體認識

1.本節課我們學習了哪些知識內容?

2.你認為學習集合有什么意義?

3.比較列舉法與描述法的優缺點。

(五)布置作業

作業:習題1.1A組:2、3、4.

作業的布置是要突出本節課的重點——集合概念的理解以及集合的表示法,讓學生對數學符號的適用在課外進行延伸和鞏固。

說板書

在教學中我把黑板分為三部分,把知識要點寫在左側,中間是課本例題演練,右側是實例應用。在左側的知識要點主要列出了集合、元素的概念、元素的特性:確定性,互異性,無序性,和集合的表示法:列舉法和描述法。

以上是我對《集合的含義與表示》這節教材的認識和對教學過程的設計。對這節課的設計,我始終在努力貫徹一教師為主導,以學生為主題,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力為指導思想,利用各種教學手段激發學生的學習興趣,體現了對學生創新意識的培養。

高中數學教案大全篇7

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;

(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。

教學建議

一、知識結構

二、重點難點分析

本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題。難點是導出排列數的公式和解有關排列的應用題。突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中。

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同。排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數。排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數。

公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好的推導。

排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力。

在分析應用題的`解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用。

在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

三、教法建議

①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號表示排列數。

②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”。

從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別。

在排列的定義中,如果有的書上叫選排列,如果,此時叫全排列。

要特別注意,不加特殊說明,本章不研究重復排列問題。

③關于排列數公式的推導的教學。公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導,,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的。

導出公式后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是,共m個因數相乘。”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘。

公式是在引出全排列數公式后,將排列數公式變形后得到的公式。對這個公式指出兩點:

(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;

(2)為使這個公式在時也能成立,規定,如同時一樣,是一種規定,因此,不能按階乘數的原意作解釋。

④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解。

⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實。隨著學生解題熟練程度的提高,可以逐步降低這種要求。

高中數學教案大全篇8

教學目標:

①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1

板書:

解:Ⅰ)當0

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

∵5.1<5.9 ∴loga5.1

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

高中數學教案大全篇9

一.教學目標:

1.知識與技能

(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的交集與并集

(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集

(3)能使用venn圖表達集合的運算,體會直觀圖示對理解抽象概念的作用

2.過程與方法

學生通過觀察和類比,借助venn圖理解集合的基本運算

3.情感.態度與價值觀

(1)進一步樹立數形結合的思想

(2)進一步體會類比的作用

(3)感受集合作為一種語言,在表示數學內容時的簡潔和準確

二.教學重點.難點

重點:交集與并集,全集與補集的概念

難點:理解交集與并集的概念,符號之間的區別與聯系

三.學法與教學用具

1.學法:學生借助venn圖,通過觀察、類比、思考、交流和討論等,理解集合的基本運算

2.教學用具:投影儀

四.教學思路

(一)創設情景,揭示課題

問題1:我們知道,實數有加法運算。類比實數的加法運算,集合是否也可以“相加”呢?

請同學們考察下列各個集合,你能說出集合c與集合a、b之間的關系嗎?

引導學生通過觀察,類比、思考和交流,得出結論。教師強調集合也有運算,這就是我們本節課所要學習的內容。

(二)研探新知

l.并集

—般地,由所有屬于集合a或屬于集合b的元素所組成的集合,稱為集合a與b的并集

記作:a∪b

讀作:a并b

其含義用符號表示為:

用venn圖表示如下:

請同學們用并集運算符號表示問題1中a,b,c三者之間的關系

練習、檢查和反饋

(1)設a={4,5,6,8),b={3,5,7,8),求a∪b

(2)設集合

讓學生獨立完成后,教師通過檢查,進行反饋,并強調:

(1)在求兩個集合的并集時,它們的公共元素在并集中只能出現一次

(2)對于表示不等式解集的集合的運算,可借助數軸解題

2.交集

(1)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?

請同學們考察下面的問題,集合a、b與集合c之間有什么關系?

②b={是新華中學20--年9月入學的高一年級同學},c={是新華中學20--年9月入學的高一年級女同學}

教師組織學生思考、討論和交流,得出結論,從而得出交集的定義;

一般地,由屬于集合a且屬于集合b的所有元素組成的集合,稱為a與b的交集

記作:a∩b

讀作:a交b

其含義用符號表示為:

接著教師要求學生用venn圖表示交集運算

(2)練習、檢查和反饋

①設平面內直線上點的集合為,直線上點的集合為,試用集合的運算表示的位置關系

②學校里開運動會,設a={是參加一百米跑的同學},b={是參加二百米跑的同學},c={是參加四百米跑的同學},學校規定,在上述比賽中,每個同學最多只能參加兩項比賽,請你用集合的運算說明這項規定,并解釋集合運算a∩b與a∩c的含義

學生獨立練習,教師檢查,作個別指導,并對學生中存在的問題進行反饋和糾正

(三)學生自主學習,閱讀理解

1.教師引導學生閱讀教材第10~11頁中有關補集的內容,并思考回答下例問題:

(1)什么叫全集?

(2)補集的含義是什么?用符號如何表示它的含義?用venn圖又表示?

(3)已知集合

(4)設s={是至少有一組對邊平行的四邊形},a={是平行四邊形},b={是菱形},c={是矩形},求。

在學生閱讀、思考的過程中,教師作個別指導,待學生經過閱讀和思考完后,請學生回答上述問題,并及時給予評價

(四)歸納整理,整體認識

1.通過對集合的學習,同學對集合這種語言有什么感受?

2.并集、交集和補集這三種集合運算有什么區別?

(五)作業

1.課外思考:對于集合的基本運算,你能得出哪些運算規律?

2.請你舉出現實生活中的一個實例,并說明其并集,交集和補集的現實含義

3.書面作業:教材第12頁習題1.1a組第7題和b組第4題

高中數學教案大全篇10

1.如圖,已知直線L:的右焦點F,且交橢圓C于A、B兩點,點A、B在直線上的射影依次為點D、E。

(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;

(2)(理)連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;否則說明理由。

(文)若為x軸上一點,求證:

2.如圖所示,已知圓定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足,點N的軌跡為曲線E。

(1)求曲線E的方程;

(2)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足的取值范圍。

3.設橢圓C:的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交x軸正半軸于點Q,且

⑴求橢圓C的離心率;

⑵若過A、Q、F三點的圓恰好與直線

l:相切,求橢圓C的方程.

4.設橢圓的離心率為e=

(1)橢圓的左、右焦點分別為F1、F2、A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程.

(2)求b為何值時,過圓x2+y2=t2上一點M(2,)處的切線交橢圓于Q1、Q2兩點,而且OQ1OQ2.

5.已知曲線上任意一點P到兩個定點F1(-,0)和F2(,0)的距離之和為4.

(1)求曲線的方程;

(2)設過(0,-2)的直線與曲線交于C、D兩點,且為坐標原點),求直線的方程.

6.已知橢圓的左焦點為F,左、右頂點分別為A、C,上頂點為B.過F、B、C作⊙P,其中圓心P的坐標為(m,n).

(Ⅰ)當m+n0時,求橢圓離心率的范圍;

(Ⅱ)直線AB與⊙P能否相切?證明你的結論.

7.有如下結論:圓上一點處的切線方程為,類比也有結論:橢圓處的切線方程為,過橢圓C:的右準線l上任意一點M引橢圓C的兩條切線,切點為A、B.

(1)求證:直線AB恒過一定點;(2)當點M在的縱坐標為1時,求△ABM的面積

8.已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;

(Ⅱ)設Q為橢圓E上的一個動點,求的取值范圍.

9.橢圓的對稱中心在坐標原點,一個頂點為,右焦點與點的距離為。

(1)求橢圓的方程;

(2)是否存在斜率的直線:,使直線與橢圓相交于不同的兩點滿足,若存在,求直線的傾斜角;若不存在,說明理由。

10.橢圓方程為的一個頂點為,離心率。

(1)求橢圓的方程;

(2)直線:與橢圓相交于不同的兩點滿足,求。

11.已知橢圓的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作,其中圓心P的坐標為.

(1)若橢圓的離心率,求的方程;

(2)若的圓心在直線上,求橢圓的方程.

12.已知直線與曲線交于不同的兩點,為坐標原點.

(Ⅰ)若,求證:曲線是一個圓;

(Ⅱ)若,當且時,求曲線的離心率的取值范圍.

13.設橢圓的左、右焦點分別為、,A是橢圓C上的一點,且,坐標原點O到直線的距離為.

(1)求橢圓C的方程;

(2)設Q是橢圓C上的一點,過Q的直線l交x軸于點,較y軸于點M,若,求直線l的方程.

14.已知拋物線的頂點在原點,焦點在y軸的負半軸上,過其上一點的切線方程為為常數).

(I)求拋物線方程;

(II)斜率為的直線PA與拋物線的另一交點為A,斜率為的直線PB與拋物線的另一交點為B(A、B兩點不同),且滿足,求證線段PM的中點在y軸上;

(III)在(II)的條件下,當時,若P的坐標為(1,-1),求PAB為鈍角時點A的縱坐標的取值范圍.

15.已知動點A、B分別在x軸、y軸上,且滿足AB=2,點P在線段AB上,且

設點P的軌跡方程為c。

(1)求點P的軌跡方程C;

(2)若t=2,點M、N是C上關于原點對稱的兩個動點(M、N不在坐標軸上),點Q

坐標為求△QMN的面積S的最大值。

16.設上的兩點,

已知,,若且橢圓的離心率短軸長為2,為坐標原點.

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線AB過橢圓的焦點F(0,c),(c為半焦距),求直線AB的斜率k的值;

(Ⅲ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由

17.如圖,F是橢圓(a0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為.點C在x軸上,BCBF,B,C,F三點確定的圓M恰好與直線l1:相切.

(Ⅰ)求橢圓的方程:

(Ⅱ)過點A的直線l2與圓M交于PQ兩點,且,求直線l2的方程.

18.如圖,橢圓長軸端點為,為橢圓中心,為橢圓的右焦點,且.

(1)求橢圓的標準方程;

(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

19.如圖,已知橢圓的中心在原點,焦點在軸上,離心率為,且經過點.直線交橢圓于兩不同的點.

20.設,點在軸上,點在軸上,且

(1)當點在軸上運動時,求點的軌跡的方程;

(2)設是曲線上的點,且成等差數列,當的垂直平分線與軸交于點時,求點坐標.

21.已知點是平面上一動點,且滿足

(1)求點的軌跡對應的方程;

(2)已知點在曲線上,過點作曲線的兩條弦和,且,判斷:直線是否過定點?試證明你的結論.

22.已知橢圓的中心在坐標原點,焦點在坐標軸上,且經過、、三點.

(1)求橢圓的方程:

(2)若點D為橢圓上不同于、的任意一點,,當內切圓的面積最大時。求內切圓圓心的坐標;

(3)若直線與橢圓交于、兩點,證明直線與直線的交點在直線上.

23.過直角坐標平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點。

(1)用表示A,B之間的距離;

(2)證明:的大小是與無關的定值,

并求出這個值。

24.設分別是橢圓C:的左右焦點

(1)設橢圓C上的點到兩點距離之和等于4,寫出橢圓C的方程和焦點坐標

(2)設K是(1)中所得橢圓上的動點,求線段的中點B的軌跡方程

(3)設點P是橢圓C上的任意一點,過原點的直線L與橢圓相交于M,N兩點,當直線PM,PN的斜率都存在,并記為試探究的值是否與點P及直線L有關,并證明你的結論。

25.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.

(I)求橢圓的方程;

(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;

(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.

26.如圖所示,已知橢圓:,、為

其左、右焦點,為右頂點,為左準線,過的直線:與橢圓相交于、

兩點,且有:(為橢圓的半焦距)

(1)求橢圓的離心率的最小值;

(2)若,求實數的取值范圍;

(3)若,,

求證:、兩點的縱坐標之積為定值;

27.已知橢圓的左焦點為,左右頂點分別為,上頂點為,過三點作圓,其中圓心的坐標為

(1)當時,橢圓的離心率的取值范圍

(2)直線能否和圓相切?證明你的結論

28.已知點A(-1,0),B(1,-1)和拋物線.,O為坐標原點,過點A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點Q,如圖.

(I)證明:為定值;

(II)若△POM的面積為,求向量與的夾角;

(Ⅲ)證明直線PQ恒過一個定點.

29.已知橢圓C:上動點到定點,其中的距離的最小值為1.

(1)請確定M點的坐標

(2)試問是否存在經過M點的直線,使與橢圓C的兩個交點A、B滿足條件(O為原點),若存在,求出的方程,若不存在請說是理由。

30.已知橢圓,直線與橢圓相交于兩點.

(Ⅰ)若線段中點的橫坐標是,求直線的方程;

(Ⅱ)在軸上是否存在點,使的值與無關?若存在,求出的值;若不存在,請說明理由.

31.直線AB過拋物線的焦點F,并與其相交于A、B兩點。Q是線段AB的中點,M是拋物線的準線與y軸的交點.O是坐標原點.

(I)求的取值范圍;

(Ⅱ)過A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證:∥;

(Ⅲ)若P是不為1的正整數,當,△ABN的面積的取值范圍為時,求該拋物線的方程.

32.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.

(Ⅰ)當時,求橢圓的方程及其右準線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,與拋物線交于、,如果以線段為直徑作圓,試判斷點與圓的位置關系,并說明理由;

(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.

33.已知點和動點滿足:,且存在正常數,使得。

(1)求動點P的軌跡C的方程。

(2)設直線與曲線C相交于兩點E,F,且與y軸的交點為D。若求的值。

34.已知橢圓的右準線與軸相交于點,右焦點到上頂點的距離為,點是線段上的一個動點.

(I)求橢圓的方程;

(Ⅱ)是否存在過點且與軸不垂直的直線與橢圓交于、兩點,使得,并說明理由.

35.已知橢圓C:(.

(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;

(2)在(1)的條件下,設過定點的直線與橢圓C交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率k的取值范圍;

(3)如圖,過原點任意作兩條互相垂直的直線與橢圓()相交于四點,設原點到四邊形一邊的距離為,試求時滿足的條件.

36.已知若過定點、以()為法向量的直線與過點以為法向量的直線相交于動點.

(1)求直線和的方程;

(2)求直線和的斜率之積的值,并證明必存在兩個定點使得恒為定值;

(3)在(2)的條件下,若是上的兩個動點,且,試問當取最小值時,向量與是否平行,并說明理由。

37.已知點,點(其中),直線、都是圓的切線.

(Ⅰ)若面積等于6,求過點的拋物線的方程;

(Ⅱ)若點在軸右邊,求面積的最小值.

38.我們知道,判斷直線與圓的位置關系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關系有類似的判別方法嗎?請同學們進行研究并完成下面問題。

(1)設F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關系。

(2)設F1、F2是橢圓的兩個焦點,點F1、F2到直線

(m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。

(3)試寫出一個能判斷直線與橢圓的位置關系的充要條件,并證明。

(4)將(3)中得出的結論類比到其它曲線,請同學們給出自己研究的有關結論(不必證明)。

39.已知點為拋物線的焦點,點是準線上的動點,直線交拋物線于兩點,若點的縱坐標為,點為準線與軸的交點.

(Ⅰ)求直線的方程;(Ⅱ)求的面積范圍;

(Ⅲ)設,,求證為定值.

40.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.

(I)求橢圓的方程;

(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;

(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.

41.已知以向量為方向向量的直線過點,拋物線:的頂點關于直線的對稱點在該拋物線的準線上.

(1)求拋物線的方程;

(2)設、是拋物線上的兩個動點,過作平行于軸的直線,直線與直線交于點,若(為坐標原點,、異于點),試求點的軌跡方程。

42.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.

(Ⅰ)當時,求橢圓的方程及其右準線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,

與拋物線交于、,如果以線段為直徑作圓,

試判斷點與圓的位置關系,并說明理由;

(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.

43.設橢圓的`一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率且過橢圓右焦點的直線與橢圓C交于兩點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.

(Ⅲ)若AB是橢圓C經過原點O的弦,MNAB,求證:為定值.

44.設是拋物線的焦點,過點M(-1,0)且以為方向向量的直線順次交拋物線于兩點。

(Ⅰ)當時,若與的夾角為,求拋物線的方程;

(Ⅱ)若點滿足,證明為定值,并求此時△的面積

45.已知點,點在軸上,點在軸的正半軸上,點在直線上,且滿足.

(Ⅰ)當點在軸上移動時,求點的軌跡的方程;

(Ⅱ)設、為軌跡上兩點,且0,,求實數,

使,且.

46.已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。

(1)已知橢圓的離心率;

(2)若的最大值為49,求橢圓C的方程.

高中數學教案大全篇11

教學分析

本節課的研究是對初中不等式學習的延續和拓展,也是實數理論的進一步發展.在本節課的學習過程中,將讓學生回憶實數的基本理論,并能用實數的基本理論來比較兩個代數式的大小.

通過本節課的學習, 讓學生從一系列的具體問題情境中,感受到在現實世界和日常生活中存在著大量的不等關系,并充分認識不等關系的存在與應用.對不等關系的相關素材,用數學觀點進行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關系表示出來.在本節課的學習過程中還安排了一些簡單的、學生易于處理的問題,其用意在于讓學生注意對數學知識和方法的應用,同時也能激發學生的學習興趣,并由衷地產生用數學工具研究不等關系的愿望.根據本節課的教學內容,應用再現、回憶得出實數的基本理論,并能用實數的基本理論來比較兩個代數式的大小.

在本節教學中,教師可讓學生閱讀書中實例,充分利用數軸這一簡單的數形結合工具,直接用實數與數軸上 點的一一對應關系,從數與形兩方面建立實數的順序關系.要在溫故知新的基礎上提高學生對不等式的認識.

三維目標

1.在學生了解不等式產生的實際背景下,利用數軸回憶實數的基本理論,理解實數的大小關系,理解實數大小與數軸上對應點位置間的關系.

2.會用作差法判斷實數與代數式的大小,會用配方法判斷二次式的大小和范圍.

3.通過溫故知新,提高學生對不等式的認識,激發學生的學習興趣,體會數學的奧秘與數學的結構美.

重點難點

教學重點:比較實數與代數式的大小關系,判斷二次式的大小和范圍.

教學難點:準確比較兩個代數式的大小.

課時安排

1課時

教學過程

導入新課

思路1.(章頭圖導入)通過多媒體展示衛星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學生帶入“橫看成嶺側成峰,遠近高低各不同”的大自然和浩瀚的宇宙中,使學生在具體情境中感受到不等關系在現實世界和日常生活中是大量存在的,由此產生用數學研究不等關系的強烈愿望,自然地引入新課.

思路2.(情境導入)列舉出學生身體的高矮、身體的輕重、距離學校路程的遠近、百米賽跑的時間、數學成績的多少等現實生活中學生身邊熟悉的事例,描述出某種客觀事物在數量上存在的不等關系.這些不等關系怎樣在數學上表示出來呢?讓學生自由地展開聯想,教師組織不等關系的相關素材,讓學 生用數學的觀點進行觀察、歸納,使學生在具體情境中感受到不等關系與相等關系一樣,在現實世界和日常生活中大量存在著.這樣學生會由衷地產生用數學工具研究不等關系的愿望,從而進入進一步的探究學習,由此引入新課.

推進新課

新知探究

提出問題

?1?回憶初中學過的不等式,讓學生說出“不等關系”與“不等式”的異同.怎樣利用不等式研究及表示不等關系?

?2?在現實世界和日常生活中,既有相等關系,又存在著大量的不等關系.你能舉出一些實際例子嗎?

?3?數軸上的任意兩 點與對應的兩實數具有怎樣的關系?

?4?任意兩個實數具有怎樣的關系?用邏輯用語怎樣表達這個關系?

活動:教師引導學生回憶初中學過的不等式概念,使學生明確“不等關系”與“不等式”的異同.不等關系強調的是關系,可用符號“>”“<”“≠”“≥”“≤”表示,而不等式則是表示兩者的不等關系,可用“a>b”“a

教師與學生一起舉出我們日常生活中不等關系的例子,可讓學生充分合作討論,使學生感受到現實世界中存在著大量的不等關系.在學生了解了一些不等式產生的實際背景的前提下,進一步學習不等式的有關內容.

實例1:某天的天氣預報報道,氣溫32 ℃,最低氣溫26 ℃.

實例2:對于數軸上任意不同的兩點A、B,若點A在點B的左邊,則xA

實例3:若一個數是非負數,則這個數大于或等于零.

實例4:兩點之間線段最短.

實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.

實例6:限速40 km/h的路標指示司機在前方路段行駛時,應使汽車的速度v不超過40 km/h.

實例7:某品牌酸奶的質量檢查規定,酸奶中脂肪的含量f應不少于2.5%,蛋白質的含量p應不少于2.3%.

教師進一步點撥:能夠發現身 邊的數學當然很好,這說明同學們已經走進了數學這門學科,但作為我們研究數學的人來說,能用數學的眼光、數學的觀點進行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數學的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關系呢?學生很容易想到,用不等式或不等式組來表示這些不等關系.那么不等式就是用不等號將兩個代數式連結起來所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.

教師引導學生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負數,則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交換被減數與減數的位置也可以.

實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應點撥學生注意酸奶中的脂肪含量與蛋白質含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.

對以上問題,教師讓學生輪流回答,再用投影儀給出課本上的兩個結論.

討論結果:

(1)(2)略;(3)數軸上任意兩點中,右邊點對應的實數比左邊點對應的實數大.

(4)對于任意兩個實數a和b,在a=b,a>b,a應用示例

例1(教材本節例1和例2)

活動:通過兩例讓學生熟悉兩個代數式的大小比較的基本方法:作差,配方法.

點評:本節兩例的求解,是借助因式分解和應用配方法完成的,這兩種方法是代數式變形時經常使用的方法,應讓學生熟練掌握.

變式訓練

1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關系是(  )

A.f(x)>g(x)       B.f(x)=g(x)

C.f(x)

答案:A

解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.

解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.

例2比較下列各組數的大小(a≠b).

(1)a+b2與21a+1b(a>0,b>0);

(2)a4-b4與4a3(a-b).

活動:比較兩個實數的大小,常根據實數的運算性質與大小順序的關系,歸結為判斷它們的差的符號來確定.本例可由學生獨立完成,但要點撥學生在最后的符號判斷說理中,要理由充分,不可忽略這點.

解:(1)a+b2-21a+1b=a+b2-2aba+b=?a+b?2-4ab2?a+b?=?a-b?22?a+b?.

∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴?a-b?22?a+b?>0,即a+b2>21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(當且僅當a=b=0時取等號),

又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

∴a4-b4<4a3(a-b).

點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變為“積”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.

變式訓練

已知x>y,且y≠0,比較xy與1的大小.

活動:要比較任意兩個數或式的大小關系,只需確定它們的差與0的大小關系.

解:xy-1=x-yy.

∵x>y,∴x-y>0.

當y<0時,x-yy<0,即xy-1<0. ∴xy<1;

當y>0時,x-yy>0,即xy-1>0.∴xy>1.

點評:當字母y取不同范圍的值時,差xy-1的正負情況不同,所以需對y分類討論.

例3建筑設計規定,民用住宅的窗戶面積必須小于地板面積.但按采光標準,窗戶面積與地板面積的比值應不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積, 住宅的采光條件是變好了,還是變壞了?請說明理由.

活動:解題關鍵首先是把文 字語言轉換成數學語言,然后比較前后比值的大小,采用作差法.

解:設住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據問題的要求a

由于a+mb+m-ab=m?b-a?b?b+m?>0,于是a+mb+m>ab.又ab≥10%,

因此a+mb+m>ab≥10%.

所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.

點評:一般地,設a、b為正實數,且a

變式訓練

已知a1,a2,…為各項都大于零的等比數列,公比q≠1,則(  )

A.a1+a8>a4+a5        B.a1+a8

C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各項都大于零,∴q>0,即1+q>0.

又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

課堂小結

1.教師與學生共同完成本節課的小結,從實數的基本性質的回顧,到兩個實數大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓練,讓學生去繁就簡,聯系舊知,將本節課所學納入已有的知識體系中.

2.教師畫龍點睛,點撥利用實數的基本性質對兩個實數大小比較時易錯的地方.鼓勵學有余力的學生對節末的思考與討論在課后作進一步的探究.

作業

習題3—1A組3;習題3—1B組2.

設計感想

1.本節設計關注了教學方法 的優化.經驗告訴我們:課堂上應根據具體情況,選擇、設計最能體現教學規律的教學 過程,不宜長期使用一種固定的教學方法,或原封不動地照搬一種實驗模式.各種教學方法中,沒有一種能很好地適應一切教學活動.也就是說,世上沒有萬能的教學方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.

2.本節設計注重了難度控制.不等式內容應用面廣,可以說與其他所有內容都有交匯,歷 來是高考的重點與熱點.作為本章開始,可以適當開闊一些,算作拋磚引玉,讓學生有個自由探究聯想的平臺,但不宜過多向外拓展,以免對學生產生負面影響.

3.本節設計關注了學生思維能力的訓練.訓練學生的思維能力,提升思維的品質,是數學教師直面的重要課題,也是中學數學教育的主線.采用一題多解有助于思維的發散性及靈活性,克服思維的僵化.變式訓練教學又可以拓展學生思維視野的廣度,解題后的點撥反思有助于學生思維批判性品質的提升.

高中數學教案大全篇12

學習目標

明確排列與組合的聯系與區別,能判斷一個問題是排列問題還是組合問題;能運用所學的排列組合知識,正確地解決的實際問題.

學習過程

一、學前準備

復習:

(課本P28A13)填空:

(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數是;

(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數是;

(3)5名工人要在3天中各自選擇1天休息,不同方法的種數是;

(4)集合A有個元素,集合B有個元素,從兩個集合中各取1個元素,不同方法的種數是;

二、新課導學

探究新知(復習教材P14~P25,找出疑惑之處)

問題1:判斷下列問題哪個是排列問題,哪個是組合問題:

(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?

(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?

應用示例:

例1:從10個不同的文藝節目中選6個編成一個節目單,如果某女演員的獨唱節目一定不能排在第二個節目的位置上,則共有多少種不同的排法?

例2:7位同學站成一排,分別求出符合下列要求的不同排法的種數.

(1)甲站在中間;

(2)甲、乙必須相鄰;

(3)甲在乙的左邊(但不一定相鄰);

(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

(5)甲、乙、丙相鄰;

(6)甲、乙不相鄰;

(7)甲、乙、丙兩兩不相鄰。

反饋練習

1、(課本P40A4)某學生邀請10位同學中的6位參加一項活動,其中兩位同學要么都請,要么都不請,共有多少種邀請方法?

2、5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列

3、馬路上有12盞燈,為了節約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.

當堂檢測

1、某班新年聯歡會原定的5個節目已排成節目單,開演前又增加了兩個新節目.如果將這兩個節目插入原節目單中,那么不同插法的種數為()

A.42B.30C.20D.12

2、(課本P40A7)書架上有4本不同的數學書,5本不同的物理書,3本不同的化學書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?

課后作業

1、(課本P41B2)用數字0,1,2,3,4,5組成沒有重復數字的數,問:(1)能夠組成多少個六位奇數?(2)能夠組成多少個大于201345的正整數?

2、(課本P41B4)某種產品的加工需要經過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?

高中數學教案大全篇13

目標

1、通過觀察粘貼活動,尋找兩個集合交集、差集中元素,依據特征進行嘗試擺放;發展幼兒多緯度的思維能力。

2、培養幼兒的嘗試精神,發展幼兒思維的敏捷性、邏輯性。

3、有興趣參加數學活動。

準備

?水果找家》、《圖形組合物》幻燈片個1張(no.86—87),幼兒每人相同內容練習紙2張(見練習冊no.4—5),如圖(1)和圖(2)。

過程

(一)觀察

1、出示《水果》幻燈片,引導幼兒思考:

(1)兩個圈內分別有什么?各有幾個?

(2)左圈內的水果么特征?(有葉子)

(3)右圈內的水果么特征?(有梗子)

(4)兩圈相交部分中的水果么特征?(有葉子且有梗子)

2、出示《圖形組合物》幻燈片,引導幼兒思考:

(1)兩個圈內分別有什么特征?各有一個?

(2)左圈內的東西有什么特征?(紅色)

(3)右圈內的東西有什么特征?(個數是5個)

(4)兩圈相交部分中的東西有什么特征?(紅色且個數是5個)

(二)區分

讓幼兒思考:依據特征,如把右邊的水果或左邊的娃娃臉擺放到圈內,該分別放在哪里?

個別幼兒口述位置和理由,如圖(1)中的桃子該放在左圈但不在右圈中,因為桃子有葉無梗;圖(2)中的圓臉娃娃該放在兩圈相交部分,因為她是紅色且組成的圓形個數是5個。

(三)粘貼

幼兒在練習紙上將左(右)邊的各圖示物一一撕下,分別粘貼在兩個圈中的相對位置。

(教師巡回指導,幫助幼兒正確粘貼)

建議

(一)本活動設計內容亦可分兩次進行。

(二)亦可用實物材料在集合擺放圈中進行分類擺放,見《兒童數形寶盒》說明圖29。觀察記錄與評估。

高中數學教案大全篇14

各位評委,老師們:大家好!

很高興參加這次說課活動。這對我來說也是一次難得的學習和鍛煉的機會,感謝各位老師在百忙之中來此予以指導。希望各位評委和老師們對我的說課內容提出寶貴意見。

我說課的內容是平面向量的教學,所用的教材是人民教育出版社出版的全日制普通高級中學教科書(試驗修訂本-必修)數學第一冊下,教學內容為第96頁至98頁第五章第一節。本校是浙江省一級重點中學,學生基礎相對較好。我在進行教學設計時,也充分考慮到了這一點。

下面我從教材分析,教學目標的確定,教學方法的選擇和教學過程的設計四個方面來匯報我對這節課的教學設想。

一、教材分析

(1)地位和作用

向量是近代數學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著極其豐富的實際背景,在數學和物理學科中具有廣泛的應用。

平面向量的基本概念是在學生了解了物理學中的有關力,位移等矢量的概念的基礎上進一步對向量的深入學習。為學習向量的知識體系奠定了知識和方法基礎。

(2)教學結構的調整

課本在這一部分內容的教學為一課時,首先從小船航行的距離和方向兩個要素出發,抽象出向量的概念,并重點說明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學生更好地掌握這些基本概念,同時深化其認知過程和探究過程。在教學中我將教學的順序做如下的調整:將本節教學中認知過程的教學內容適當集中,以突出這節課的主題;例題,習題部分主要由學生依照概念自行分析,獨立完成。

(3)重點,難點,關鍵

由于本節課是本章內容的第一節課,是學生學習本章的基礎。為了本章后面知識的學習,首先必須掌握向量的概念,要抓住向量的本質:大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點。本節課是為高一后半學期學生設計的,盡管此時的學生已經有了一定的學習方法和習慣,但根據以往的教學經驗,多數學生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學生的理解能力要求比較高,所以我認為向量概念也是這節課的難點。而解決這一難點的關鍵是多用復雜的幾何圖形中相等的有向線段讓學生進行辨認,加深對向量的理解。

二、教學目標的確定

根據本課教材的特點,新大綱對本節課的教學要求,學生身心發展的合理需要,我從三個方面確定了以下教學目標:

(1)基礎知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據圖形判定向量是否平行,共線,相等。

(2)能力訓練目標:培養學生觀察、歸納、類比、聯想等發現規律的一般方法,培養學生觀察問題,分析問題,解決問題的能力。

(3)情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。

三、教學方法的選擇

Ⅰ教學方法

本節課我采用了”啟發探究式的教學方法,根據本課教材的特點和學生的實際情況在教學中突出以下兩點:

(1)由教材的特點確立類比思維為教學的主線。

從教材內容看平面向量無論從形式還是內容都與物理學中的有向線段,矢量的概念類似。因此在教學中運用類比作為思維的主線進行教學。讓學生充分體會數學知識與其他學科之間的聯系以及發生與發展的過程。

(2)由學生的特點確立自主探索式的學習方法

通常學生對于概念課學起來很枯燥,不感興趣,因此要考慮學生的情感需要,找一些學生感興趣的題材來激發學生的學習興趣,另外,學生都有表現自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情??紤]到我校學生的基礎較好,思維較為活躍,對自主探索式的學習方法也有一定的認識,所以在教學中我通過創設問題情境,啟發引導學生運用科學的思維方法進行自主探究。將學生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學的全過程,突出學生的主體作用。

Ⅱ教學手段

本節課中,除使用常規的教學手段外,我還使用了多媒體投影儀和計算機來輔助教學。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數形結合思想,更易于對概念的理解和難點的突破。

四、教學過程的設計

Ⅰ知識引入階段---提出學習課題,明確學習目標

(1)創設情境——引入概念

數學學習應該與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發,讓他們在生活中去發現數學、探究數學、認識并掌握數學。

由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學生思維活躍,想象力豐富的特點,有利于激發學生的學習興趣。

(2)觀察歸納——形成概念

由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的.起點,方向和長度,它的終點就唯一確定。再有目的的進行設計,引導學生概括總結出本課新的知識點:向量的概念及其幾何表示。

(3)討論研究——深化概念

在得到概念后進行歸納,深化,之后向學生提出以下三個問題:

①向量的要素是什么?

②向量之間能否比較大小?

③向量與數量的區別是什么?

同時指出這就是本節課我們要研究和學習的主題。

Ⅱ知識探索階段---探索平面向量的平行向量。相等向量等概念

(1)總結反思——提高認識

方向相同或相反的非零向量叫平行向量,也即共線向量,并且規定0與任一向量平行。長度相等且方向相同的向量叫相等向量,規定零向量與零向量相等。平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

(2)即時訓練—鞏固新知

為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知識。

高中數學教案大全篇15

排列

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

教學重點難點

重點是排列的定義、排列數并運用這個公式去解決有關排列數的應用問題。

難點是解有關排列的應用題。

教學過程設計

一、 復習引入

上節課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):

1.書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?

2.某農場為了考察三個外地優良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區?

找一同學談解答并說明怎樣思考的的過程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學書,可以從40本中任取1本,有40種方法.根據加法原理,得到不同的取法種數是50+40=90.第(2)小題從書架上取社會科學、自然科學書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學書,第二步取一本自然科學書,根據乘法原理,得到不同的取法種數是: 50×40=2000.

第2題說,共有A,B,C三個優良品種,而每個品種在甲類型土地上實驗有三個小區,在乙類型的土地上有三個小區……所以共需3×5=15個實驗小區.

二、 講授新課

學習了兩個基本原理之后,現在我們繼續學習排列問題,這是我們本節討論的重點.先從實例入手:

1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?

由學生設計好方案并回答.

(1)用加法原理設計方案.

首先確定起點站,如果北京是起點站,終點站是上?;驈V州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.

(2)用乘法原理設計方案.

首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經選了起點站,終點站只能在其余兩個站去選.那么,根據乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.

根據以上分析由學生(板演)寫出所有種飛機票

再看一個實例.

在航海中,船艦常以“旗語”相互聯系,即利用不同顏色的旗子發送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?

找學生談自己對這個問題的想法.

事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數,也就是紅、黃、綠這三面旗子的所有不同順序的排法總數.

首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;

其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數是:3×2×1=6(種).

根據學生的分析,由另外的同學(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)

第三個實例,讓全體學生都參加設計,把所有情況(包括每個位置情況)寫出來.

由數字1,2,3,4可以組成多少個沒有重復數字的三位數?寫出這些所有的三位數.

根據乘法原理,從四個不同的數字中,每次取出三個排成三位數的方法共有4×3×2=24(個).

請板演的學生談談怎樣想的?

第一步,先確定百位上的數字.在1,2,3,4這四個數字中任取一個,有4種取法.

第二步,確定十位上的數字.當百位上的數字確定以后,十位上的數字只能從余下的三個數字去取,有3種方法.

第三步,確定個位上的數字.當百位、十位上的數字都確定以后,個位上的數字只能從余下的兩個數字中去取,有2種方法.

根據乘法原理,所以共有4×3×2=24種.

下面由教師提問,學生回答下列問題

(1)以上我們討論了三個實例,這三個問題有什么共同的地方?

都是從一些研究的對象之中取出某些研究的對象.

(2)取出的這些研究對象又做些什么?

實質上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請大家看書,第×頁、第×行. 我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數字都是元素.

上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.

第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個問題呢?

從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.

下面由教師提問,學生回答下列問題

(1)按著這個定義,結合上面的問題,請同學們談談什么是相同的排列?什么是不同的排列?

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.

如第一個問題中,北京—廣州,上?!獜V州是兩個排列,第三個問題中,213與423也是兩個排列.

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.

(2)還需要搞清楚一個問題,“一個排列”是不是一個數?

生:“一個排列”不應當是一個數,而應當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數,不用把所有情況羅列出來,才是一個數.前面提到的第三個問題,實質上也是這樣的.

三、 課堂練習

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內,每箱必須并且只能放一張,而且卡片數碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.

解法是:第一步把數碼卡片四張中2,3,4三張任選一個放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業

課本:P232練習1,2,3,4,5,6,7.

高中數學教案大全篇16

教學目標

1、了解基底的含義,理解并掌握平面向量基本定理。會用基底表示平面內任一向量。

2、掌握向量夾角的定義以及兩向量垂直的定義。

學情分析

前幾節課已經學習了向量的基本概念和基本運算,如共線向量、向量的加法、減法和數乘運算及向量共線的充要條件等;另外學生對向量的物理背景有了初步的了解。如:力的合成與分解、位移、速度的合成與分解等,都為學習這節課作了充分準備

重點難點

重點:對平面向量基本定理的探究

難點:對平面向量基本定理的理解及其應用

教學過程

4.1第一學時教學活動

活動1【導入】情景設置

火箭在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度v=vx+vy=6i+4j。

活動2【活動】探究

已知平面中兩個不共線向量e1,e2,c是平面內任意向量,求向量

c=___e1+___e2(課堂上準備好幾張帶格子的紙張,上面有三個向量,e1,e2,c)

做法:

作OA=e1,OB=e2,OC=c,過點C作平行于OB的直線,交直線OA于M;過點C作平行于OA的直線,交OB于N,則有且只有一對實數l1,l2,使得OM=l1e1,ON=l2e2。

因為OC=OM+ON,所以c=6e1+6e2。

向量c=__6__e1+___6__e2

活動3【練習】動手做一做

請同學們自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____

(做完后,思考一下,這樣的一組實數是否是唯一的呢?)(是唯一的)

由剛才的幾個實例,可以得出結論:如果給定向量e1,e2,平面內的任一向量a,都可以表示成a=入1e1+入2e2。

活動4【活動】思考

問題2:如果e1,e2是平面內任意兩向量,那么平面內的任一向量a還可以表示成a=入1e1+入2e2的形式嗎?

生:不行,e1,e2必須是平面內兩不共線向量

活動5【講授】平面向量基本定理

平面向量基本定理:如果e1,e2是平面內兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數l1,l2,使a=l1e1+l2e2。我們把不共線向量e1,e2叫做這一平面內所有向量的一組基底。一個平面向量用一組基底e1,e2表示成a=l1e1+l2e2的形式,我們稱它為向量的分解。當e1,e2互相垂直時,就稱為向量的正交分解。

說明:

(1)基底不惟一,關鍵是作為基底的兩個向量不共線。

(2)由定理可將任一向量a在給出基底e1,e2的條件下進行分解,基底給定時,分解形式惟一,即l1,l2是被a,e1,e2惟一確定的數量。

活動6【講授】平面向量基底運用

例1.如圖所示,平行四邊形ABCD的對角線AC和BD交于點M,AB=a,AD=b,試用基底a,b表示MC,MA,MB和MD

活動7【講授】向量夾角的定義

閱讀教材P94,回答如下問題:

1、兩個向量夾角是如何形成的?,必須要滿足什么條件才是它們的夾角。

2、有向量夾角范圍是多少?有夾角大小來描述一下向量同向,反向,垂直?

活動8【練習】完成《聚焦課堂》活動9【講授】課后小結

1、平面向量基本定理

2、平面向量基本定理的運用

3、向量夾角的定義。

活動10【作業】課后作業

1、已知向量e1,e2,求做:-3e1+2e2

2、做育才報第八期專項訓練1

高中數學教案大全篇17

高中數學數列知識點

數列的函數理解:

①數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集N_或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。③函數不一定有解析式,同樣數列也并非都有通項公式。

通項公式:數列的第N項an與項的序數n之間的關系可以用一個公式an=f(n)來表示,這個公式就叫做這個數列的通項公式(注:通項公式不)。

數列通項公式的特點:

(1)有些數列的通項公式可以有不同形式,即不。

(2)有些數列沒有通項公式(如:素數由小到大排成一列2,3,5,7,11,...)。

遞推公式:如果數列{an}的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數列的遞推公式。

數列遞推公式特點:

(1)有些數列的遞推公式可以有不同形式,即不。

(2)有些數列沒有遞推公式。

有遞推公式不一定有通項公式。

注:數列中的項必須是數,它可以是實數,也可以是復數。

等差數列通項公式

an=a1+(n-1)d

n=1時a1=S1

n≥2時an=Sn-Sn-1

an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

等差中項

由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

有關系:A=(a+b)÷2

前n項和

倒序相加法推導前n項和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

∴Sn=n(a1+an)÷2

等差數列的前n項和等于首末兩項的和與項數乘積的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

等差數列性質

一、任意兩項am,an的關系為:

an=am+(n-m)d

它可以看作等差數列廣義的通項公式。

二、從等差數列的定義、通項公式,前n項和公式還可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq

四、對任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。

怎么樣提高數學成績

首先想要提升數學成績,成為數學學霸的前提是要對數學有良好的學習興趣。其次要學會課前預習,方便自己能夠更加深入的吃透課堂上的知識點。然后還要學會總結復習,總結自己課堂上的問題,復習課堂上的重要知識點,從而提高自己的數學成績。

提升數學成績還要擁有一個錯題本,和數學資料。認真對待自己的學習工具,多做練習題,找出自己的薄弱環節和自己常犯的題型,記在錯題本上,常練習,常鞏固。在自己的數學資料中摸索出適合自己的解題技巧,反復練習加以運用,一定會提升你的數學成績。

學會聽課,在課堂上勇于提問。數學最重要的部分都是在課本上,所以必須要掌握好課堂的45分鐘。把握好數學課本,為自己打下一個好基礎,這樣才能更有效的提升你的數學成績。學會做課堂筆記,把每節課的重要知識點記下來,以便接下來的復習。

學好數學的方法技巧整理

預習的方法

上課之前一定要抽時間進行預習,有時預習比做作業更重要,因為通過預習我們可以初步掌握課程的大致內容,聽課就能夠把握好重點,針對性比較強,還會帶著問題去聽課,聽課效率就會比較高,上課聽明白了,完成作業也會更好更快,最終會形成良性循環。

聽懂課的習慣

注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最后的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉變為“會聽”。

不斷練習

不斷練習是指多做數學練習題。希望學好數學,多做練習是必不可少的。做練習的原因有以下三點:第一,熟練和鞏固學到的數學知識;二,引導同學靈活運用所學知識點以及獨立思考獨立做題的水平;第三,融會貫通。通過做題將所學的所有知識點結合起來,加深同學對數學體系化的理解。

高中數學教案大全篇18

1、教學目標:

一、借助單位圓理解任意角的三角函數的定義。

二、根據三角函數的定義,能夠判斷三角函數值的符號。

三、通過學生積極參與知識的"發現"與"形成"的過程,培養合情猜測的能力,從中感悟數學概念的嚴謹性與科學性。

四、讓學生在任意角三角函數概念的形成過程中,體會函數思想,體會數形結合思想。

2、教學重點與難點:

重點:任意角的正弦、余弦、正切的定義;三角函數值的符號。

難點:任意角的三角函數概念的建構過程。

授課過程:

一、引入

在我們的現實世界中的許多運動變化都有循環往復、周而復始的現象,這種變化規律稱為周期性。如何用數學的方法來刻畫這種變化?從這節課開始,我們要來學習刻畫這種規律的數學模型之一――三角函數。

二、創設情境

三角函數是與角有關的函數,在學習任意角概念時,我們知道在直角坐標系中研究角,可以給學習帶來許多方便,比如我們可以根據角終邊的位置把它們進行歸類,現在大家考慮:若在直角坐標系中來研究銳角,則銳角三角函數又可怎樣定義呢?

學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標。

問題:

1、銳角三角函數能否表示成第二種比值方式?

2、點P能否取在終邊上的其它位置?為什么?

3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數依舊表示一個比值,不過其分母為1而已。

練習:計算的各三角函數值。

三、任意角的三角函數的定義

角的概念已經推廣道了任意角,那么三角函數的定義在任意角的范圍里改怎么定義呢?

嘗試:根據銳角三角函數的定義,你能嘗試著給出任意角三角函數的定義嗎?

評價學生給出的定義。給出任意角三角函數的定義。

四、解析任意角三角函數的定義

三角函數首先是函數。你能從函數觀點解析三角函數嗎?(定義域)

對于確定的角a,上面三個函數值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數值的函數,我們將它們統稱為三角函數。由于角的集合和實數集之間可以建立一一對應的關系,三角函數可以看成是自變量為實數的函數。

五、三角函數的應用。

1、已知角,求a的三角函數值。

2、已知角a終邊上的一點P(-3,-4),求各三角函數值。

以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題:

1、已知角如何求三角函數值?

2、利用角a的終邊上任意一點的坐標也可以定義三角函數,你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)

3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數值。

4、探究:三角函數的值在各象限的符號。

六、小結及作業

教案設計說明:

新教材的教學理念之一是讓學生去體驗新知識的發生過程,這節《任意角三角函數》的教案,主要圍繞這一點來設計。

首先,角的概念推廣了,那么銳角三角函數的定義是否也該推廣到任意角的三角函數的定義呢?通過這個問題,讓學生體會到新知識的發生是可能的,自然的。

其次,到底應該怎樣去合理定義任意角的三角函數呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹的,科學的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數的定義有所沖突。在這個立-破的過程中,讓學生去體驗一個新的數學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助于學生對任意角三角函數概念的理解。

再次,讓學生充分體會在任意角三角函數定義的推廣中,是如何將直角三角形這個"形"的問題,轉換到直角坐標系下點的坐標這個"數"的過程的。培養數形結合的思想。

83936 主站蜘蛛池模板: 生鲜配送系统-蔬菜食材配送管理系统-连锁餐饮订货配送软件-挪挪生鲜供应链管理软件 | 扒渣机厂家_扒渣机价格_矿用扒渣机_铣挖机_撬毛台车_襄阳永力通扒渣机公司 | 今日热点_实时热点_奇闻异事_趣闻趣事_灵异事件 - 奇闻事件 | 交通信号灯生产厂家_红绿灯厂家_电子警察监控杆_标志杆厂家-沃霖电子科技 | 无线联网门锁|校园联网门锁|学校智能门锁|公租房智能门锁|保障房管理系统-KEENZY中科易安 | 郑州水质检测中心_井水检测_河南废气检测_河南中环嘉创检测 | 三轴曲线机-端子插拔力试验机|华杰仪器 | 超声波清洗机_细胞破碎仪_实验室超声仪器_恒温水浴-广东洁盟深那仪器 | 集装袋吨袋生产厂家-噸袋廠傢-塑料编织袋-纸塑复合袋-二手吨袋-太空袋-曹县建烨包装 | 双舌接地线-PC68数字式高阻计-ZC36|苏海百科| 防爆暖风机_防爆电暖器_防爆电暖风机_防爆电热油汀_南阳市中通智能科技集团有限公司 | 舞台木地板厂家_体育运动木地板_室内篮球馆木地板_实木运动地板厂家_欧氏篮球地板推荐 | 焊接烟尘净化器__焊烟除尘设备_打磨工作台_喷漆废气治理设备 -催化燃烧设备 _天津路博蓝天环保科技有限公司 | 杭州火蝠电商_京东代运营_拼多多全托管代运营【天猫代运营】 | 聚天冬氨酸,亚氨基二琥珀酸四钠,PASP,IDS - 远联化工 | 无硅导热垫片-碳纤维导热垫片-导热相变材料厂家-东莞市盛元新材料科技有限公司 | 无压烧结银_有压烧结银_导电银胶_导电油墨_导电胶-善仁(浙江)新材料 | 水冷式工业冷水机组_风冷式工业冷水机_水冷螺杆冷冻机组-深圳市普威机械设备有限公司 | 河南凯邦机械制造有限公司| 防渗土工膜|污水处理防渗膜|垃圾填埋场防渗膜-泰安佳路通工程材料有限公司 | 周口市风机厂,周鼓风机,河南省周口市风机厂 | 广州中央空调回收,二手中央空调回收,旧空调回收,制冷设备回收,冷气机组回收公司-广州益夫制冷设备回收公司 | 钢制暖气片散热器_天津钢制暖气片_卡麦罗散热器厂家 | 宝元数控系统|对刀仪厂家|东莞机器人控制系统|东莞安川伺服-【鑫天驰智能科技】 | 南溪在线-南溪招聘找工作、找房子、找对象,南溪综合生活信息门户! | 安平县鑫川金属丝网制品有限公司,声屏障,高速声屏障,百叶孔声屏障,大弧形声屏障,凹凸穿孔声屏障,铁路声屏障,顶部弧形声屏障,玻璃钢吸音板 | 低气压试验箱_高低温低气压试验箱_低气压实验箱 |林频试验设备品牌 | 石家庄救护车出租_重症转院_跨省跨境医疗转送_活动赛事医疗保障_康复出院_放弃治疗_腾康26年医疗护送转诊团队 | 多米诺-多米诺世界纪录团队-多米诺世界-多米诺团队培训-多米诺公关活动-多米诺创意广告-多米诺大型表演-多米诺专业赛事 | 365文案网_全网创意文案句子素材站 | 实验室装修_实验室设计_实验室规划设计- 上海广建净化工程公司 | 金刚网,金刚网窗纱,不锈钢网,金刚网厂家- 河北萨邦丝网制品有限公司 | 河南道路标志牌_交通路标牌_交通标志牌厂家-郑州路畅交通 | 二维运动混料机,加热型混料机,干粉混料机-南京腾阳干燥设备厂 | 外贮压-柜式-悬挂式-七氟丙烷-灭火器-灭火系统-药剂-价格-厂家-IG541-混合气体-贮压-非贮压-超细干粉-自动-灭火装置-气体灭火设备-探火管灭火厂家-东莞汇建消防科技有限公司 | 塑料薄膜_PP薄膜_聚乙烯薄膜-常州市鑫美新材料包装厂 | 东莞螺丝|东莞螺丝厂|东莞不锈钢螺丝|东莞组合螺丝|东莞精密螺丝厂家-东莞利浩五金专业紧固件厂家 | 冷轧机|两肋冷轧机|扁钢冷轧机|倒立式拉丝机|钢筋拔丝机|收线机-巩义市华瑞重工机械制造有限公司 | 3d打印服务,3d打印汽车,三维扫描,硅胶复模,手板,快速模具,深圳市精速三维打印科技有限公司 | 活性氧化铝球|氧化铝干燥剂|分子筛干燥剂|氢氧化铝粉-淄博同心材料有限公司 | 雪花制冰机(实验室雪花制冰机)百科|