小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 > 優秀教案 >

幼兒園數學優秀教案

時間: 新華 優秀教案

有了興趣,學習就不是一種負擔,而是一種享受,因此數學老師要積極培養學生們的學習興趣。在數學教學工作中,你知道如何寫優秀數學教案?不妨和我們分享一下。你是否在找正準備撰寫“幼兒園數學優秀教案”,下面小編收集了相關的素材,供大家寫文參考!

幼兒園數學優秀教案1

教學目標

1.等腰三角形的概念.2.等腰三角形的性質.3.等腰三角形的概念及性質的應用.

教學重點:1.等腰三角形的概念及性質.2.等腰三角形性質的應用.

教學難點:等腰三角形三線合一的性質的理解及其應用.

教學過程

Ⅰ.提出問題,創設情境

在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是.

問題:那什么樣的三角形是軸對稱圖形?

滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形.

Ⅱ.導入新課:要求學生通過自己的思考來做一個等腰三角形.

作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

思考:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

2.等腰三角形的兩底角有什么關系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.

沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質:

1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

求:△ABC各角的度數.

分析:根據等邊對等角的性質,我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內角和為180°,就可求出△ABC的三個內角.

把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:因為AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設∠A=x,則∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習來鞏固這節課所學的知識.

Ⅲ.隨堂練習:1.課本P51練習1、2、3.2.閱讀課本P

49~P51,然后小結.

Ⅳ.課時小結

這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們.

Ⅴ.作業:課本P56習題12.3第1、2、3、4題.

板書設計

12.3.1.1等腰三角形

一、設計方案作出一個等腰三角形

二、等腰三角形性質:1.等邊對等角2.三線合一

幼兒園數學優秀教案2

教學過程

一、復習等腰三角形的判定與性質

二、新授:

1.等邊三角形的性質:三邊相等;三角都是60°;三邊上的中線、高、角平分線相等

2.等邊三角形的判定:

三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;

在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關系.

3.由學生解答課本148頁的例子;

4.補充:已知如圖所示,在△ABC中,BD是AC邊上的中線,DB⊥BC于B,

∠ABC=120o,求證:AB=2BC

分析由已知條件可得∠ABD=30o,如能構造有一個銳角是30o的直角三角形,斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了

幼兒園數學優秀教案3

教學目標

1、理解并掌握等腰三角形的判定定理及推論

2、能利用其性質與判定證明線段或角的相等關系.

教學重點:等腰三角形的判定定理及推論的運用

教學難點:正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關系.

教學過程:

一、復習等腰三角形的性質

二、新授:

I提出問題,創設情境

出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.

學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.

II引入新課

1.由性質定理的題設和結論的變化,引出研究的內容——在△ABC中,苦∠B=∠C,則AB=AC嗎?

作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?

2.引導學生根據圖形,寫出已知、求證.

2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”.

4.引導學生說出引例中地質專家的測量方法的根據.

III例題與練習

1.如圖2

其中△ABC是等腰三角形的是[]

2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據什么?).

②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

④若已知AD=4cm,則BC______cm.

3.以問題形式引出推論l______.

4.以問題形式引出推論2______.

例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.

分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.

練習:5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?

(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

練習:P53練習1、2、3。

IV課堂小結

1.判定一個三角形是等腰三角形有幾種方法?

2.判定一個三角形是等邊三角形有幾種方法?

3.等腰三角形的性質定理與判定定理有何關系?

4.現在證明線段相等問題,一般應從幾方面考慮?

V布置作業:P56頁習題12.3第5、6題

幼兒園數學優秀教案4

一、創設情境 導入新課

1、介紹七巧板

師:你們玩過七巧板嗎?你知道七巧板是由哪些不同的圖形組成的嗎?

一千多年前,中國人發明了七巧板。七巧板是由七塊圖形組成的,它可以拼出豐富的圖案來。外國人管它叫“中國魔板”,在他們看來,沒有哪一種智力玩具比它更神奇的了。

2、導入:今天就讓我們一起來認識其中的一個圖形—平行四邊形。(出示課題)

【設計意圖:以學生喜愛的“七巧板”為切入點,引發學生的學習熱情。】

二、嘗試探索 建立模型

(一)認一認 形成表象

師:老師這兒的圖形就是平行四邊形。改變方向后問:它還是平行四邊形嗎?

不管平行四邊形的方向怎樣變化,它都是一個平行四邊形。(圖貼在黑板上)

(二)找一找 感知特征

1、在例題圖中找平行四邊形

師:老師這有幾幅圖,你能在這上面找到平行四邊形嗎?

2、尋找生活中的平行四邊形

師:其實在我們周圍也有平行四邊形,你在哪些地方見過平行四邊形?(可相機出示:活動衣架)

(三)做一做 探究特征

1、剛才我們在生活中找到了一些平行四邊形,現在你能利用手邊的材料做出一個平行四邊形嗎?

2、在小組里交流你是怎么做的并選代表在班級里匯報。

3、剛才同學們成功的做出了一個平行四邊形,在做的過程中,你有什么發現或收獲嗎?你是怎樣發現的?(小組交流)

4、全班交流,師小結平行四邊形的特征。(兩組對邊分別平行并且相等;對角相等;內角和是360度。)

【設計意圖:新課程強調體驗性學習,學生學習不僅要用腦子去想,而且還要用眼睛看,用耳去聽,用嘴去說,用手去做,即用自己的身體去親身經歷,用自己的心靈去感悟。這里通過認平行四邊形、找平行四邊形和做平行四邊形,使學生經歷由表象到抽象的過程。在一系列的活動中,讓學生感悟到了平行四邊形的特征。】

(四)練一練 鞏固表象

完成想想做做第1、2題

(五)畫一畫 認識高、底

1、出示例題,你能量出平行四邊形兩條紅線間的距離嗎?(學生在自制的圖上畫)說說你是怎么量的?

2、師:剛才你們畫的這條垂直線段就是平行四邊形的高。這條對邊就是平行四邊形的底。

3、平行四邊形的高和底書上是怎么說的呢?(學生看書)

4、這樣的高能畫多少條呢?為什么?你能畫出另一組對邊上的高,并量一量嗎?(機動)

5、教學“試一試”。(學生各自量,交流時強調底與高的對應關系)

6、畫高(想想做做第5題)(提醒學生畫上直角標記)

三、動手操作 鞏固深化

1、完成想想做做第3、4題

第3題:拼一拼、移一移,說說怎樣移的?

第4題引入:木匠張師傅想把一塊平行四邊形的木板鋸成兩部分,拼成一張長方形桌面,假如你是張師傅,該怎么鋸呢?想試試嗎?找一張平行四邊形的紙試一試。

2、完成想想做做第6題 (課前做好,課上活動。)

(1)師拿出自做的長方形,捏住對角相反方向拉一拉,看你發現了什么?師做生觀察,互相交流。

(2)判斷:長方形是平行四邊形嗎?小組交流然后再說理由,此時老師可問學生長方形是什么樣的平行四邊形?(特殊)特殊在哪了?

(3)得出平行四邊形的特性

師再捏住平行四邊形的對角向里推。看你發現了什么?

師:三角形具有穩定性,通過剛才的動手操作,你覺得平行四邊形有什么特性呢?(不穩定性、容易變形)

(4)特性的應用

師:平行四邊形容易變形的特性在生活中有廣泛的應用。你能舉些例子嗎?(學生舉例后閱讀教科書P45“你知道嗎?”)

【設計意圖:】

四、暢談收獲 拓展延伸

1、師:今天這節課你有什么收獲嗎?

2、用你手中的七巧板拼我們學過的圖形。

3、尋找平行四邊形容易變形的特性在生活中的應用。

【設計意圖:擴展課堂教學的有限空間,課內課外密切結合。課結束時,布置實踐作業,要學生尋找平行四邊形容易變形的特性在生活中的應用,使學生的課堂學習和課后生活聯系起來,使學生感受到課堂知識在生活中的應用,體驗到生活中時時處處離不開數學,增強數學學習的親切感和實用性。】

幼兒園數學優秀教案5

教學目標

1.等腰三角形的概念. 2.等腰三角形的性質. 3.等腰三角形的概念及性質的應用.

教學重點: 1.等腰三角形的概念及性質. 2.等腰三角形性質的應用.

教學難點:等腰三角形三線合一的性質的理解及其應用.

教學過程

Ⅰ.提出問題,創設情境

在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是.

問題:那什么樣的三角形是軸對稱圖形?

滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形.

Ⅱ.導入新課: 要求學生通過自己的思考來做一個等腰三角形.

作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

思考:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

2.等腰三角形的兩底角有什么關系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.

沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質:

1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

求:△ABC各角的度數.

分析:根據等邊對等角的性質,我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內角和為180°,就可求出△ABC的三個內角.

把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:因為AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設∠A=x,則 ∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習來鞏固這節課所學的知識.

Ⅲ.隨堂練習:1.課本P51練習 1、2、3. 2.閱讀課本P49~P51,然后小結.

Ⅳ.課時小結

這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們.

Ⅴ.作業: 課本P56習題12.3第1、2、3、4題.

板書設計

12.3.1.1 等腰三角形

一、設計方案作出一個等腰三角形

二、等腰三角形性質: 1.等邊對等角 2.三線合一

數學優秀教學方案相關文章:

小學教案模板

《認識圖形》一年級數學上冊教案

23986 主站蜘蛛池模板: 气动隔膜阀_气动隔膜阀厂家_卫生级隔膜阀价格_浙江浙控阀门有限公司 | 铝单板_铝窗花_铝单板厂家_氟碳包柱铝单板批发价格-佛山科阳金属 | 可程式恒温恒湿试验箱|恒温恒湿箱|恒温恒湿试验箱|恒温恒湿老化试验箱|高低温试验箱价格报价-广东德瑞检测设备有限公司 | 钢制暖气片散热器_天津钢制暖气片_卡麦罗散热器厂家 | 沉降天平_沉降粒度仪_液体比重仪-上海方瑞仪器有限公司 | 安徽合肥项目申报咨询公司_安徽合肥高新企业项目申报_安徽省科技项目申报代理 | 移动机器人产业联盟官网 | 钢衬四氟管道_钢衬四氟直管_聚四氟乙烯衬里管件_聚四氟乙烯衬里管道-沧州汇霖管道科技有限公司 | 美名宝起名网-在线宝宝、公司、起名平台| 卷筒电缆-拖链电缆-特种柔性扁平电缆定制厂家「上海缆胜」 | 铝板冲孔网,不锈钢冲孔网,圆孔冲孔网板,鳄鱼嘴-鱼眼防滑板,盾构走道板-江拓数控冲孔网厂-河北江拓丝网有限公司 | 北京环球北美考试院【官方网站】|北京托福培训班|北京托福培训 | 瓶盖扭矩测试仪-瓶盖扭力仪-全自动扭矩仪-济南三泉中石单品站 | 手持式浮游菌采样器-全排二级生物安全柜-浙江孚夏医疗科技有限公司 | 杭州画室_十大画室_白墙画室_杭州美术培训_国美附中培训_附中考前培训_升学率高的画室_美术中考集训美术高考集训基地 | 上海电子秤厂家,电子秤厂家价格,上海吊秤厂家,吊秤供应价格-上海佳宜电子科技有限公司 | 海德莱电力(HYDELEY)-无功补偿元器件生产厂家-二十年专业从事电力电容器 | 罗茨真空机组,立式无油往复真空泵,2BV水环真空泵-力侨真空科技 | YJLV22铝芯铠装电缆-MYPTJ矿用高压橡套电缆-天津市电缆总厂 | 工业淬火油烟净化器,北京油烟净化器厂家,热处理油烟净化器-北京众鑫百科 | 全自动实验室洗瓶机,移液管|培养皿|进样瓶清洗机,清洗剂-广州摩特伟希尔机械设备有限责任公司 | 重庆波纹管|重庆钢带管|重庆塑钢管|重庆联进管道有限公司 | 打包箱房_集成房屋-山东佳一集成房屋有限公司 | 玻璃瓶厂家_酱菜瓶厂家_饮料瓶厂家_酒瓶厂家_玻璃杯厂家_徐州东明玻璃制品有限公司 | 济南画室培训-美术高考培训-山东艺霖艺术培训画室 | 电力测功机,电涡流测功机,磁粉制动器,南通远辰曳引机测试台 | 手术室净化装修-手术室净化工程公司-华锐手术室净化厂家 | 家用净水器代理批发加盟_净水机招商代理_全屋净水器定制品牌_【劳伦斯官网】 | 刹车盘机床-刹车盘生产线-龙口亨嘉智能装备 | 政府回应:200块在义乌小巷能买到爱情吗?——揭秘打工族省钱约会的生存智慧 | 螺杆泵_中成泵业 | 酒店厨房设计_中央厨房设计_北京商用厨房设计公司-奇能商厨 | 刘秘书_你身边专业的工作范文写作小秘书 | 细胞染色-流式双标-试剂盒免费代做-上海研谨生物科技有限公司 | 生物风-销售载体,基因,质粒,ATCC细胞,ATCC菌株等,欢迎购买-百风生物 | ASA膜,ASA共挤料,篷布色母料-青岛未来化学有限公司 | 快速门厂家-快速卷帘门-工业快速门-硬质快速门-西朗门业 | 周口市风机厂,周鼓风机,河南省周口市风机厂 | 超声波气象站_防爆气象站_空气质量监测站_负氧离子检测仪-风途物联网 | 苏州伊诺尔拆除公司_专业酒店厂房拆除_商场学校拆除_办公楼房屋拆除_家工装拆除拆旧 | 银川美容培训-美睫美甲培训-彩妆纹绣培训-新娘化妆-学化妆-宁夏倍莱妮职业技能培训学校有限公司 临时厕所租赁_玻璃钢厕所租赁_蹲式|坐式厕所出租-北京慧海通 |